Transverse instability and its long-term development for solitary waves of the (2+1)-dimensional Boussinesq equation.

نویسندگان

  • K B Blyuss
  • T J Bridges
  • G Derks
چکیده

The stability properties of line solitary wave solutions of the (2+1)-dimensional Boussinesq equation with respect to transverse perturbations and their consequences are considered. A geometric condition arising from a multisymplectic formulation of this equation gives an explicit relation between the parameters for transverse instability when the transverse wave number is small. The Evans function is then computed explicitly, giving the eigenvalues for the transverse instability for all transverse wave numbers. To determine the nonlinear and long-time implications of the transverse instability, numerical simulations are performed using pseudospectral discretization. The numerics confirm the analytic results, and in all cases studied, the transverse instability leads to collapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Stability of Stationary Solutions of a Boussinesq System Describing Long Waves in Dispersive Media

We study the spectral (in)stability of one-dimensional solitary and cnoidal waves of various Boussinesq systems. These systems model three-dimensional water waves (i.e., the surface is two-dimensional) with or without surface tension. We present the results of numerous computations examining the spectra related to the linear stability problem for both stationary solitary and cnoidal waves with ...

متن کامل

Transverse Nonlinear Instability of Solitary Waves for Some Hamiltonian Pde’s Frederic Rousset and Nikolay Tzvetkov

We present a general result of transverse nonlinear instability of 1-d solitary waves for Hamiltonian PDE’s for both periodic or localized transverse perturbations. Our main structural assumption is that the linear part of the 1d model and the transverse perturbation “have the same sign”. Our result applies to the generalized KP-I equation, the Nonlinear Schrödinger equation, the generalized Bo...

متن کامل

Transverse nonlinear instability for two-dimensional dispersive models

We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.

متن کامل

Transverse linear instability of solitary waves for coupled long-wave-short-wave interaction equations

In this paper, we investigate the transverse linear instability of one-dimensional solitary wave solutions of the coupled system of two-dimensional long-wave-short-wave interaction equations. We show that the one-dimensional solitary waves are linearly unstable to perturbations in the transverse direction if the coefficient of the term associated with transverse effects is negative. This transv...

متن کامل

Multilump Symmetric and Nonsymmetric Gravity-Capillary Solitary Waves in Deep Water

Multilump gravity-capillary solitary waves propagating in a fluid of infinite depth are computed numerically. The study is based on a weakly nonlinear and dispersive partial differential equation (PDE) with weak variations in the spanwise direction, a model derived by Akers and Milewski [Stud. Appl. Math., 122 (2009), pp. 249–274]. For a two-dimensional fluid, this model agrees qualitatively we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003