ABC-SysBio—approximate Bayesian computation in Python with GPU support
نویسندگان
چکیده
MOTIVATION The growing field of systems biology has driven demand for flexible tools to model and simulate biological systems. Two established problems in the modeling of biological processes are model selection and the estimation of associated parameters. A number of statistical approaches, both frequentist and Bayesian, have been proposed to answer these questions. RESULTS Here we present a Python package, ABC-SysBio, that implements parameter inference and model selection for dynamical systems in an approximate Bayesian computation (ABC) framework. ABC-SysBio combines three algorithms: ABC rejection sampler, ABC SMC for parameter inference and ABC SMC for model selection. It is designed to work with models written in Systems Biology Markup Language (SBML). Deterministic and stochastic models can be analyzed in ABC-SysBio. AVAILABILITY http://abc-sysbio.sourceforge.net
منابع مشابه
Fundamentals and Recent Developments in Approximate Bayesian Computation
Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) ...
متن کاملABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison
We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the fle...
متن کاملEditorial for Emerging Computational Methods for the Life Sciences Workshop Special Issue 2012
This paper surveys the contents of the special issue on Emerging Computational Methods for the Life Sciences Workshop 2012 with six contributed papers. They cover a rich variety of topics on interface of life sciences and data intensive computation which in detail are parallelization with GPU and multicore of an important tandem mass spectrometry peptide identification tool MyriMatch; enhanceme...
متن کاملApproximate Bayesian computation and Bayes linear analysis: Towards high-dimensional ABC
Bayes linear analysis and approximate Bayesian computation (ABC) are techniques commonly used in the Bayesian analysis of complex models. In this article we connect these ideas by demonstrating that regression-adjustment ABC algorithms produce samples for which first and second order moment summaries approximate adjusted expectation and variance for a Bayes linear analysis. This gives regressio...
متن کاملBayesian Model Choice using Coupled ABC
In Neal (2010), a novel Approximate Bayesian Computation (ABC) algorithm, coupled ABC, was introduced. This paper shows how coupled ABC can be used in an efficient manner for model choice in a Bayesian framework. The methodology is applied to Gibbs random fields and stochastic epidemic models. Furthermore a very efficient simulation procedure for Gibbs random fields with a given sufficient summ...
متن کامل