Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models

نویسندگان

  • Xiang Song
  • Xiaodong Zeng
چکیده

The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2, and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (ΔFtree; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether ΔFtree was positive or negative, while the tree fractional coverage (Ftree; %) played a decisive role in the amplitude of ΔFtree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, Ftree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < Ftree < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, ΔFtree had a stronger dependence on Ftree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition

Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO2 (atm. CO2) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring is...

متن کامل

Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ,...

متن کامل

Banded vegetation in some Australian semi-arid landscapes: 20 years of field observations to support the development and evaluation of numerical models of vegetation pattern evolution

     Periodic vegetation patterns (PVPs) are striking features of many global drylands. Although they have attracted wide research study, resulting in many hypotheses, their origin and controlling factors remain unresolved. Theoretical works dominate a large literature seeking to account for the occurrence and properties of PVPs, especially banded vegetation patterns (‘tiger bush’). In light of...

متن کامل

Altered dynamics of forest recovery under a changing climate.

Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, species assemblages, and ecosystem-climate interactions. Climate change may alter forest recovery dynamics or even prevent recovery, triggering feedbacks to the climate system, altering regional biodiversity, and affecting the ecosystem services provided by forests. Multiple lines o...

متن کامل

Hydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model

Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017