Areal moments of inertia revisited: on the distinction between the principal directions
نویسندگان
چکیده
Three commonly used methods to determine the principal moments of inertia of a plane area and their directions are based on: (i) the stationarity condition for the axial moment of inertia, (ii) the eigenvalue analysis, and (iii) Mohr’s circle. In this paper we provide two new derivations, which are based on: (a) the matrix diagonalization and the invariant tensor properties, and (b) the conjugacy property of the moment of inertia vectors. A new general expression is derived which specifies the principal directions of inertia, as well as the directions of the maximum and minimum product of inertia. A comparative study of the five presented approaches is given, which is of interest from both conceptual and methodological points of view. The connection between the deviatoric part of the moment of inertia tensor and Land’s circle of inertia is also given. The presented analysis applies to any two-by-two symmetric second order tensor.
منابع مشابه
Experimental investigation of the gyroscopic and rotary inertia effects on the chatter boundary in a milling process
Experimental examination of the gyroscopic and rotary inertia effects on the chatter boundary in a milling operation is the chief aim of this article. The equations of motion of the tool vibration are derived based on Timoshenko beam theory and Hamilton principle by considering gyroscopic moment, rotary inertia, velocity-dependent process damping and radial immersion effect. For a range of dept...
متن کاملQUICKSELECT Revisited
We give an overview of the running time analysis of the random divide-and-conquer algorithm FIND or QUICKSELECT. The results concern moments, distribution of FIND’s running time, the limiting distribution, a stochastic bound and the key: a stochastic fixed point equation.
متن کاملASTRONOMY AND ASTROPHYSICS Moments of inertia of relativistic magnetized stars
We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most fro...
متن کاملPrincipal curvatures from the integral invariant viewpoint
The extraction of curvature information for surfaces is a basic problem of Geometry Processing. Recently an integral invariant solution of this problem was presented, which is based on principal component analysis of local neighbourhoods defined by kernel balls of various sizes. It is not only robust to noise, but also adjusts to the level of detail required. In the present paper we show an asy...
متن کاملDetection of Shapes of Objects Using Sophisticated Image Processing Techniques
This paper features an efficient method of performing the shape analysis of objects in a binary image using a technique called as the moments. Using these moments, we can compute the centroid, moment of inertia, principal angle, orientation of the captured objects in the image. The simulation results show the effectiveness of the developed method. Index Terms — Moments, Invariance, Centroid, Mo...
متن کامل