Selective Vulnerability of Spinal and Cortical Motor Neuron Subpopulations in delta7 SMA Mice
نویسندگان
چکیده
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.
منابع مشابه
Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy.
Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undert...
متن کاملSpinal Muscular Atrophy: A Short Review Article
Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...
متن کاملPre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy.
The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The...
متن کاملmiRNA in spinal muscular atrophy pathogenesis and therapy
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by the selective death of lower motor neurons in the brain stem and spinal cord. SMA is caused by mutations in the survival motor neuron 1 gene (SMN1), leading to the reduced expression of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that regulate post-transcriptional gene expressio...
متن کاملBioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy
Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that ...
متن کامل