Tropospheric delay estimation and analysis using GPS and SAR interferometry
نویسندگان
چکیده
Spatially localized refractivity variations, mainly due to water vapor, are a major source of error in high-precision positioning techniques such as GPS and SAR interferometry. Refractivity induced delay variations can be misinterpreted as, e.g., crustal deformation signals or positioning biases. In this study, signal delay estimates based on SAR observations and simultaneous GPS time series are quantitatively compared. Wind speed and wind direction estimates are used to relate the temporal zenith delays derived from GPS with the spatial slant delays observed by SAR interferometry, assuming a static refractivity distribution transported by the wind. Five case studies show significant correlation between both techniques, mainly limited by the GPS epoch length, zenith averaging, and the degree of similarity in wind direction during the two SAR acquisitions. RMS differences varied between 2 and 10 mm, while the total delay variability spanned 15–60 mm. The results show that it can be possible, under suitable atmospheric circumstances, to approximate the amount of delay variation with wavelengths >5 km in a strip of a SAR interferogram using GPS, wind speed, and wind direction measurements. 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Investigation of MODIS mission capability in tropospheric delay estimation for precise point positioning
Tropospheric delay is always considered as one of the factors limiting the accuracy of GPS. In this paper, the three-dimensional ray tracing technique is proposed to calculate the tropospheric delay. The ability of the MODIS mission to calculate the tropospheric delay is also examined. For this purpose, an area in central Europe was selected and a MODIS acquisition on 2008/08/01 was studied. In...
متن کاملCross-validation of Tropospheric Delay Variability Observed by Gps and Sar Interferometry
Spatially localized refractivity variations, mainly due to water vapor, are a major source of error in high-precision positioning techniques such as GPS and SAR interferometry. Refractivity induced delay variations can be misinterpreted as, e.g., crustal deformation signal or positioning biases. In this study, signal delay estimates based on SAR observations and simultaneous GPS time series are...
متن کاملAtmospheric delay analysis from GPS meteorology and InSAR APS
Radar atmospheric decorrelation due to inhomogeneity of atmospheric refractivity is a critical limitation of satellite SAR interferometry (InSAR) in the high accuracy retrieving of geophysical parameters. With mm precision, a water vapor tracing technique based on GPS meteorology was widely employed to mitigate InSAR atmospheric errors. However, a reliable comparison of atmospheric delay betwee...
متن کاملEstimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter
Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...
متن کاملSAR interferometry: Tropospheric corrections from GPS observations
Interferometric Synthetic Aperture Radar (InSAR) techniques have been recognised as an ideal tool for many ground deformation monitoring applications. However, the spatially and temporally variable delay of the radar signal propagating through the atmosphere is a major limitation to accuracy. The dominant factor to be considered is the tropospheric heterogeneity, which can lead to misinterpreta...
متن کامل