Bounds for GL ( 3 ) × GL ( 2 ) L - functions and GL ( 3 ) L - functions

نویسندگان

  • Xiaoqing Li
  • XIAOQING LI
چکیده

In this paper, we will give the subconvexity bounds for self-dual GL(3) L-functions in the t aspect as well as subconvexity bounds for self-dual GL(3) × GL(2) L-functions in the GL(2) spectral aspect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subconvexity for Twisted L-functions on Gl(3)

Let q be a large prime and χ the quadratic character modulo q. Let φ be a self-dual cuspidal Hecke eigenform for SL(3,Z), and f a Hecke-Maaß cusp form for Γ0(q) ⊆ SL2(Z). We consider the twisted L-functions L(s, φ × f × χ) and L(s, φ × χ) on GL(3) × GL(2) and GL(3) with conductors q6 and q3, respectively. We prove the subconvexity bounds L(1/2, φ× f × χ) φ,f,ε q, L(1/2 + it, φ× χ) φ,t,ε q for a...

متن کامل

ar X iv : m at h / 03 06 05 2 v 2 [ m at h . N T ] 2 A pr 2 00 4 Effective multiplicity one on GL ( n )

We give a narrow zero-free region for standard L-functions on GL(n) and Rankin-Selberg L-functions on GL(m) × GL(n) through the use of positive Dirichlet series. Such zero-free regions are equivalent to lower bounds on the edge of the critical strip, and in the case of L(s, π × ˜ π), on the residue at s = 1. Using the latter we show that a cuspidal automorphic representation on GL(n) is determi...

متن کامل

2 00 4 Moments of L - functions , periods of cusp forms , and cancellation in additively twisted sums on GL ( n ) Stephen

In a previous paper with Schmid ([29]) we considered the regularity of automorphic distributions for GL(2,R), and its connections to other topics in number theory and analysis. In this paper we turn to the higher rank setting, establishing the nontrivial bound ∑ n≤T an e 2π i nα = Oε(T 3/4+ε), uniformly in α ∈ R, for an the coefficients of the L-function of a cusp form on GL(3,Z)\GL(3,R). We al...

متن کامل

J ul 2 00 4 Moments of L - functions , periods of cusp forms , and cancellation in additively twisted sums on GL ( n )

In a previous paper with Schmid [29] we considered the regularity of automorphic distributions for GL(2,R), and its connections to other topics in number theory and analysis. In this paper we turn to the higher rank setting, establishing the nontrivial bound ∑ n≤T an e 2π i nα = Oε(T 3/4+ε), uniformly in α ∈ R, for an the coefficients of the L-function of a cusp form on GL(3,Z)\GL(3,R). We also...

متن کامل

The Second Moment of Gl(3)×gl(2) L-functions at Special Points

For a fixed SL(3,Z) Maass form φ, we consider the family of L-functions L(φ× uj, s) where uj runs over the family of Hecke-Maass cusp forms on SL(2,Z). We obtain an estimate for the second moment of this family of L-functions at the special points 1 2 + itj consistent with the Lindelöf Hypothesis. We also obtain a similar upper bound on the sixth moment of the family of Hecke-Maass cusp forms a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011