Nitric oxide decreases endothelin-1 secretion through the activation of soluble guanylate cyclase.

نویسندگان

  • Lisa K Kelly
  • Stephen Wedgwood
  • Robin H Steinhorn
  • Stephen M Black
چکیده

The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of nitric oxide to the presynaptic inhibition by endothelin ETB receptor of the canine stellate ganglionic transmission.

We previously reported that endothelin (ET) 3 inhibited presynaptically the dog stellate ganglionic transmission. Here, we report the investigation of the possible involvement of nitric oxide pathway in the endothelin-induced inhibition of the ganglionic transmission. The amount of acetylcholine released by preganglionic stimulation for 10 min was concentration-dependently inhibited after expos...

متن کامل

Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs.

BACKGROUND Inhaled nitric oxide produces potent pulmonary vasodilation by activating soluble guanylate cyclase and increasing smooth muscle cell concentrations of cyclic guanosine monophosphate. However, responses are often nonsustained, and clinically significant increases in pulmonary vascular resistance have been noted on its acute withdrawal. In vitro and in vivo data suggest that inhaled n...

متن کامل

CALL FOR PAPERS Oxygen Sensing: Life and Death of a Cell Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway

Bouallegue A, Daou GB, Srivastava AK. Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol 293: H2072–H2079, 2007. First published July 20, 2007; doi:10.1152/ajpheart.01097.2006.—Nitric oxide (NO), in addition to its vasodilator action, has also been shown to antagonize the m...

متن کامل

Involvement of guanylyl cyclase and cGMP in the regulation of Mrp2-mediated transport in the proximal tubule.

In killifish renal proximal tubules, endothelin-1 (ET-1), acting through a basolateral ET(B) receptor, nitric oxide synthase (NOS), and PKC, decreases cell-to-lumen organic anion transport mediated by the multidrug resistance protein isoform 2 (Mrp2). In the present study, we examined the roles of guanylyl cyclase and cGMP in ET signaling to Mrp2. Using confocal microscopy and quantitative imag...

متن کامل

Amyloid-β Inhibits No-cGMP Signaling in a CD36- and CD47-Dependent Manner

Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 286 5  شماره 

صفحات  -

تاریخ انتشار 2004