Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar

نویسندگان

  • Jing Liu
  • Weidong Zhou
  • Filbert H. Juwono
چکیده

Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Time-Frequency Domain Underdetermined Blind Source Separation Algorithm for MIMO Radar Signals

This paper considers the underdetermined blind separation of multiple input multiple output (MIMO) radar signals that are insufficiently sparse in both time and frequency domains under noisy conditions, while traditional algorithms are usually applied in the ideal sparse environment. An effective separation method based on single source point (SSP) identification and time-frequency smoothed l0 ...

متن کامل

2D Angle and Doppler Frequency Estimation in MIMO Radar

A novel algorithm for the joint estimation of the Direction Of Departure (DOD)-Direction Of Arrival (DOA) and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar is proposed. The proposed algorithm uses the rotational factor produced by the time delay of sampling to construct an angle matrix by fully utilizing the properties of the auto-covariance and cross-covariance mat...

متن کامل

Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar

In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 nor...

متن کامل

Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization

In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transfor...

متن کامل

Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations

In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-ofarrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in solving various array processing problems, such as direction finding and blind source separation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017