The meta-generalized delta rule : a new algorithm for learning in connectionist networks

نویسنده

  • Dean A. Pomerleau
چکیده

Currently the most popular learning algorithm for connectionist networks is the generalized delta rule (GDR) developed by Rumelhart, Hinton & Williams (1986). The GDR learns by performing gradient descent on the error surface in weight space whose height at any point is equal to a measure of the network's error. The GDR is plagued by two major problems. First, the progress towards a solution using the GDR is often quite slow. Second, networks employing the GDR frequently become trapped in local minima on the error surface and hence do not reach good solutions. To solve the problems of the GDR, a new connectionist architecture and learning algorithm is developed in this thesis. The new architectural components are called metaconnections, which are connections from a unit to the connection between two other units. Meta-connections are able to temporarily alter the weight of the connection to which they are connected. In doing this, meta-connections are able to tailor the weights of individual connections for particular input/output patterns. The new learning algorithm, called the metageneralized delta ride (MGDR), is an extension of the GDR to provide for learning the proper weights for meta-connections. Empirical tests show that the tailoring of weights using meta-connections allows the MGDR to develop solutions more quickly and reliably than the GDR in a wide range of problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

Faster Learning for Dynamic Recurrent Backpropagation

The backpropagation learning algorithm for feedforward networks (Rumelhart et al. 1986) has recently been generalized to recurrent networks (Pineda 1989). The algorithm has been further generalized by Pearlmutter (1989) to recurrent networks that produce time-dependent trajectories. The latter method requires much more training time than the feedforward or static recurrent algorithms. Furthermo...

متن کامل

A Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses

In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...

متن کامل

Analysis and Comparison of Different Learning Algorithms for Pattern Association Problems

We investigate the behavior of different learning algorithms for networks of neuron-like units. As test cases we use simple pattern association problems, such as the XOR-problem and symmetry detection problems. The algorithms considered are either versions of the Boltzmann machine learning rule or based on the backpropagation of errors. We also propose and analyze a generalized delta rule for l...

متن کامل

A Comparison between Different Meta-Heuristic Techniques in Power Allocation for Physical Layer Security

Node cooperation can protect wireless networks from eavesdropping by using the physical characteristics of wireless channels rather than cryptographic methods. Allocating the proper amount of power to cooperative nodes is a challenging task. In this paper, we use three cooperative nodes, one as relay to increase throughput at the destination and two friendly jammers to degrade eavesdropper&rsqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015