High-Order Sequence Modeling for Language Learner Error Detection

نویسنده

  • Michael Gamon
چکیده

We address the problem of detecting English language learner errors by using a discriminative high-order sequence model. Unlike most work in error-detection, this method is agnostic as to specific error types, thus potentially allowing for higher recall across different error types. The approach integrates features from many sources into the error-detection model, ranging from language model-based features to linguistic analysis features. Evaluation results on a large annotated corpus of learner writing indicate the feasibility of our approach on a realistic, noisy and inherently skewed set of data. High-order models consistently outperform low-order models in our experiments. Error analysis on the output shows that the calculation of precision on the test set represents a lower bound on the real system performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Multitask Learning for Sequence Labeling

We propose a sequence labeling framework with a secondary training objective, learning to predict surrounding words for every word in the dataset. This language modeling objective incentivises the system to learn general-purpose patterns of semantic and syntactic composition, which are also useful for improving accuracy on different sequence labeling tasks. The architecture was evaluated on a r...

متن کامل

Modeling and automating detection of errors in Arabic language learner speech

Human tutors, in dealing with non-native speakers, draw from their knowledge of common learner mistakes to understand learner speech and offer effective corrective advice. In this paper we present our work towards embedding some of this knowledge in the speech recognition and learner speech error detection subsystems of the Tactical Language Training System (TLTS). We discuss the implementation...

متن کامل

LEARNER INITIATIVES ACROSS QUESTION-ANSWER SEQUENCES: A CONVERSATION ANALYTIC ACCOUNT OF LANGUAGE CLASSROOM DISCOURSE

This paper investigates learner-initiated responses to English language teachers’ referential questions and learner initiatives after teachers’ feedback moves in meaning-focused question-answer sequences to analyze how interactional practices of language teachers, their initiation and feedback moves, facilitate learner initiatives. Classroom discourse research has largely neglected learner init...

متن کامل

Using Mostly Native Data to Correct Errors in Learners' Writing: A Meta-Classifier Approach

We present results from a range of experiments on article and preposition error correction for non-native speakers of English. We first compare a language model and errorspecific classifiers (all trained on large English corpora) with respect to their performance in error detection and correction. We then combine the language model and the classifiers in a meta-classification approach by combin...

متن کامل

Using Mostly Native Data to Correct Errors in Learners' Writing

We present results from a range of experiments on article and preposition error correction for non-native speakers of English. We first compare a language model and errorspecific classifiers (all trained on large English corpora) with respect to their performance in error detection and correction. We then combine the language model and the classifiers in a meta-classification approach by combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011