On Simplex Pivoting Rules and Complexity Theory
نویسندگان
چکیده
We show that there are simplex pivoting rules for which it is PSPACE-complete to tell if a particular basis will appear on the algorithm’s path. Such rules cannot be the basis of a strongly polynomial algorithm, unless P = PSPACE. We conjecture that the same can be shown for most known variants of the simplex method. However, we also point out that Dantzig’s shadow vertex algorithm has a polynomial path problem. Finally, we discuss in the same context randomized pivoting
منابع مشابه
Subexponential lower bounds for randomized pivoting rules for solving linear programs
The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most deterministic pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for randomized pivoting rules. We provide the first subexponential (i.e., of the form 2 α), for some α > 0...
متن کاملGPU accelerated pivoting rules for the simplex algorithm
Simplex type algorithms perform successive pivoting operations (or iterations) in order to reach the optimal solution. The choice of the pivot element at each iteration is one of the most critical step in simplex type algorithms. The flexibility of the entering and leaving variable selection allows to develop various pivoting rules. In this paper, we have proposed some of the most well-known pi...
متن کاملA Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games
The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Zadeh’s pivoting rule [Zad80]. Also known as the Least-Entered rule, Zadeh’s pivoting method belongs to the family o...
متن کاملExponential Lower Bounds for Solving Infinitary Payoff Games and Linear Programs
Parity games form an intriguing family of infinitary payoff games whose solution is equivalent to the solution of important problems in automatic verification and automata theory. They also form a very natural subclass of mean and discounted payoff games, which in turn are very natural subclasses of turn-based stochastic payoff games. From a theoretical point of view, solving these games is one...
متن کاملA subexponential lower bound for the Least Recently Considered rule for solving linear programs and games
The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Cunningham’s Least Recently Considered rule [5], which belongs to the family of history-based rules. Also known as t...
متن کامل