Energy Management for Hypervisor-Based Virtual Machines
نویسندگان
چکیده
Current approaches to power management are based on operating systems with full knowledge of and full control over the underlying hardware; the distributed nature of multi-layered virtual machine environments renders such approaches insufficient. In this paper, we present a novel framework for energy management in modular, multi-layered operating system structures. The framework provides a unified model to partition and distribute energy, and mechanisms for energy-aware resource accounting and allocation. As a key property, the framework explicitly takes the recursive energy consumption into account, which is spent, e.g., in the virtualization layer or subsequent driver components. Our prototypical implementation targets hypervisor-based virtual machine systems and comprises two components: a host-level subsystem, which controls machine-wide energy constraints and enforces them among all guest OSes and service components, and, complementary, an energy-aware guest operating system, capable of fine-grained applicationspecific energy management. Guest level energy management thereby relies on effective virtualization of physical energy effects provided by the virtual machine monitor. Experiments with CPU and disk devices and an external data acquisition system demonstrate that our framework accurately controls and stipulates the power consumption of individual hardware devices, both for energy-aware and energyunaware guest operating systems.
منابع مشابه
A Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملHierarchical memory resource groups in the ESX Server
Modern operating systems specialize in partitioning the physical compute resources of a computer among software applications. Effective partitioning of physical resources enables multiple applications to securely execute on the same physical machine while maintaining performance isolation. In a virtualized environment, a hypervisor partitions physical resources, among virtual machines. This ena...
متن کاملAnalysis of Memory Ballooning Technique for Dynamic Memory Management of Virtual Machines (VMs)
Memory ballooning is dynamic memory management technique for virtual machines (VMs). Ballooning is a part of memory reclamation technique operations used by a hypervisor to allow the physical host system to retrieve unused memory from certain guest virtual machines (VMs) and share it with others. Memory ballooning allows the total amount of RAM required by guest VMs to exceed the amount of phys...
متن کاملHardware assisted hypervisor introspection
In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually d...
متن کاملMulti-Hypervisor Virtual Machines: Enabling an Ecosystem of Hypervisor-level Services
Public cloud software marketplaces already offer users a wealth of choice in operating systems, database management systems, financial software, and virtual networking, all deployable and configurable at the click of a button. Unfortunately, this level of customization has not extended to emerging hypervisor-level services, partly because traditional virtual machines (VMs) are fully controlled ...
متن کامل