On Possible Counterexamples to Negami's Planar Cover Conjecture

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On possible counterexamples to Negami's planar cover conjecture

A simple graph H is a cover of a graph G if there exists a mapping φ from H onto G such that φ maps the neighbors of every vertex v in H bijectively to the neighbors of φ(v) in G. Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. The conjecture is still open. It follows from the results of Archdeacon, Fellows, Negami, a...

متن کامل

20 Years of Negami's Planar Cover Conjecture

In 1988, Seiya Negami published a conjecture stating that a graph G has a finite planar cover (i.e. a homomorphism from some planar graph onto G which maps the vertex neighbourhoods bijectively) if and only if G embeds in the projective plane. Though the ”if” direction is easy, and over ten related research papers have been published during the past 20 years of investigation, this beautiful con...

متن کامل

Another two graphs with no planar covers

A graph H is a cover of a graph G if there exists a mapping φ from V (H) onto V (G) such that φ maps the neighbors of every vertex v in H bijectively to the neighbors of φ(v) in G. Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the results of Archdeacon, Fellows, Negami, and the author that the conjec...

متن کامل

A note on possible extensions of Negami's conjecture

A graph H is a cover of a graph G if there exists a mapping φ from V (H) onto V (G) such that for every vertex v of G, φ maps the neighbours of v in H bijectively onto the neighbours of φ(v) in G. Negami conjectured in 1987 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. This conjecture is not completely solved yet, but partial results due to A...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999