Surgery Description of Colored Knots

نویسنده

  • STEVEN D. WALLACE
چکیده

The pair (K, ρ) consisting of a knotK ⊂ S and a surjective map ρ from the knot group onto a dihedral group is said to be a p-colored knot. In [Mos], D. Moskovich conjectures that for any odd prime p there are exactly p equivalence classes of p-colored knots up to surgery along unknots in the kernel of the coloring. We show that there are at most 2p equivalence classes. This is an improvement upon the previous results by Moskovich for p = 3, and 5, with no upper bound given in general. T. Cochran, A. Gerges, and K. Orr, in [CGO], define invariants of the surgery equivalence class of a closed 3-manifold M in the context of bordism. By taking M to be 0-framed surgery of S along K we may define Moskovich’s colored untying invariant in the same way as the Cochran-Gerges-Orr invariants. This bordism definition of the colored untying invariant will be then used to establish the upper bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homological algebra of knots and BPS states

It is known that knot homologies admit a physical description as spaces of open BPS states. We study operators and algebras acting on these spaces. This leads to a very rich story, which involves wall crossing phenomena, algebras of closed BPS states acting on spaces of open BPS states, and deformations of Landau-Ginzburg models. One important application to knot homologies is the existence of ...

متن کامل

The Colored Jones Polynomial and the A-polynomial of Two-bridge Knots

We study relationships between the colored Jones polynomial and the A-polynomial of a knot. We establish for a large class of 2-bridge knots the AJ conjecture (of Garoufalidis) that relates the colored Jones polynomial and the A-polynomial. Along the way we also calculate the Kauffman bracket skein module of all 2-bridge knots. Some properties of the colored Jones polynomial of alternating knot...

متن کامل

The Colored Jones Polynomial and the A-polynomial of Knots

We study relationships between the colored Jones polynomial and the A-polynomial of a knot. The AJ conjecture (of Garoufalidis) that relates the colored Jones polynomial and the A-polynomial is established for a large class of two-bridge knots, including all twist knots. We formulate a weaker conjecture and prove that it holds for all two-bridge knots. Along the way we also calculate the Kauffm...

متن کامل

Slopes and Colored Jones Polynomials of Adequate Knots

Garoufalidis conjectured a relation between the boundary slopes of a knot and its colored Jones polynomials. According to the conjecture, certain boundary slopes are detected by the sequence of degrees of the colored Jones polynomials. We verify this conjecture for adequate knots, a class that vastly generalizes that of alternating knots.

متن کامل

Knot Cabling and the Degree of the Colored Jones Polynomial

We study the behavior of the degree of the colored Jones polynomial and the boundary slopes of knots under the operation of cabling. We show that, under certain hypothesis on this degree, if a knot K satisfies the Slope Conjecture then a (p, q)-cable of K satisfies the conjecture, provided that p/q is not a Jones slope of K. As an application we prove the Slope Conjecture for iterated cables of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008