Image Restoration using Total Variation with Overlapping Group Sparsity

نویسندگان

  • Jun Liu
  • Ting-Zhu Huang
  • Ivan W. Selesnick
  • Xiao-Guang Lv
  • Po-Yu Chen
چکیده

Image restoration is one of the most fundamental issues in imaging science. Total variation (TV) regularization is widely used in image restoration problems for its capability to preserve edges. In the literature, however, it is also well known for producing staircase-like artifacts. Usually, the high-order total variation (HTV) regularizer is an good option except its oversmoothing property. In this work, we study a minimization problem where the objective includes an usual l2 data-fidelity term and an overlapping group sparsity total variation regularizer which can avoid staircase effect and allow edges preserving in the restored image. We also proposed a fast algorithm for solving the corresponding minimization problem and compare our method with the state-of-the-art TV based methods and HTV based method. The numerical experiments illustrate the efficiency and effectiveness of the proposed method in terms of PSNR, relative error and computing time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise

The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regulariz...

متن کامل

Image Restoration by Variable Splitting based on Total Variant Regularizer

The aim of image restoration is to obtain a higher quality desired image from a degraded image. In this strategy, an image inpainting method fills the degraded or lost area of the image by appropriate information. This is performed in such a way so that the obtained image is undistinguishable for a casual person who is unfamiliar with the original image. In this paper, different images are degr...

متن کامل

New explicit thresholding/shrinkage formulas for one class of regularization problems with overlapping group sparsity and their applications

The least-square regression problems or inverse problems have been widely studied in many fields such as compressive sensing, signal processing, and image processing. To solve this kind of ill-posed problems, a regularization term (i.e., regularizer) should be introduced, under the assumption that the solutions have some specific properties, such as sparsity and group sparsity. Widely used regu...

متن کامل

Alternating group sparsity for image restoration

Recently, collaborative image filtering based on groupbased sparse representation has gained a popularity in image restoration. BM3D frame [1], one of the first example of such a representation, utilizes both local sparsity of small size image patches and group-sparsity of collections of selfsimilar image patches. As a sparsifying transforms in the spatial and similarity domains, fixed transfor...

متن کامل

Fast Iteratively Reweighted Least Squares Algorithms for Analysis-Based Sparsity Reconstruction

In this paper, we propose a novel algorithm for analysis-based sparsity reconstruction. It can solve the generalized problem by structured sparsity regularization with an orthogonal basis and total variation regularization. The proposed algorithm is based on the iterative reweighted least squares (IRLS) model, which is further accelerated by the preconditioned conjugate gradient method. The con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 295  شماره 

صفحات  -

تاریخ انتشار 2015