Regulatory volume decrease in neural precursor cells: taurine efflux and gene microarray analysis.
نویسندگان
چکیده
BACKGROUND/AIMS Neural stem/ progenitor cells (NPCs) endure important changes in cell volume during growth, proliferation and migration. As a first approach to know about NPC response to cell volume changes, the Regulatory Volume Decrease (RVD) subsequent to hypotonic swelling was investigated. METHODS NPCs obtained from the mesencephalon and the subventricular zone of embryonic and adult mice, respectively, were grown and cultured as neurospheres. Cell volume changes were measured by large-angle light-scattering and taurine efflux by [(3)H]-taurine. Expression of genes encoding molecules related to RVD was analysed using a DNA microarray obtained from NPC samples. RESULTS Embryonic and adult NPCs exposed to osmolarity reduction (H15, H30, H40) exhibited rapid swelling followed by RVD. The magnitude, efficiency and pharmacological profile, of RVD and of [(3)H]-taurine osmosensitive efflux were comparable to those found in cultured brain cells, astrocytes and neurons. The relative expression of genes encoding molecules related to volume regulation, i.e. K(+) and Cl(-) channels, cotransporters, exchangers and aquaporins were identified in NPCs. CONCLUSION NPCs show the ability to respond to hypotonic-evoked volume changes by adaptative recovery processes, similar to those found in other cultured brain cells. Genes related to molecules involved in RVD were found expressed in NPCs.
منابع مشابه
Separate taurine and chloride efflux pathways activated during regulatory volume decrease.
Organic osmolyte and halide permeability pathways activated in epithelial HeLa cells by cell swelling were studied by radiotracer efflux techniques and single-cell volume measurements. The replacement of extracellular Cl- by anions that are more permeant through the volume-activated Cl- channel, as indicated by electrophysiological measurements, significantly decreased taurine efflux. In the pr...
متن کاملVolume-activated trimethylamine oxide efflux in red blood cells of spiny dogfish (Squalus acanthias).
The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of ...
متن کاملACELL September 46/3
Stutzin, Andrés, Rubén Torres, Macarena Oporto, Patricio Pacheco, Ana Luisa Eguiguren, L. Pablo Cid, and Francisco V. Sepúlveda. Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277 (Cell Physiol. 46): C392–C402, 1999.—Organic osmolyte and halide permeability pathways activated in epithelial HeLa cells by cell swelling were studied by ra...
متن کاملEfflux of osmolyte amino acids during isovolumic regulation in hippocampal slices.
The efflux of potassium (K(+)) and amino acids from hippocampal slices was measured after sudden exposure to 10% (270 mOsm), 25% (225 mOsm) or 50% (150 mOsm) hyposmotic solutions or after gradual decrease (-2.5 mOsm/min) in external osmolarity. In slices suddenly exposed to 50% hyposmotic solutions, swelling was followed by partial (74%) cell volume recovery, suggesting regulatory volume decrea...
متن کاملRho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts.
The role of Rho GTPases in the regulatory volume decrease (RVD) process following osmotic cell swelling is controversial and has so far only been investigated for the swelling-activated Cl- efflux. We investigated the involvement of RhoA in the RVD process in NIH3T3 mouse fibroblasts, using wild-type cells and three clones expressing constitutively active RhoA (RhoAV14). RhoAV14 expression resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2014