Salt Bridges and Gating in the COOH-terminal Region of HCN2 and CNGA1 Channels
نویسندگان
چکیده
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore. Recently, the structure of the HCN2 COOH-terminal region was solved and shown to contain intersubunit interactions between C-linker regions. To explore the role of these intersubunit interactions in intact channels, we studied two salt bridges in the C-linker region: an intersubunit interaction between C-linkers of neighboring subunits, and an intrasubunit interaction between the C-linker and its CNBD. We show that breaking these salt bridges in both HCN2 and CNGA1 channels through mutation causes an increase in the favorability of channel opening. The wild-type behavior of both HCN2 and CNGA1 channels is rescued by switching the position of the positive and negative residues, thus restoring the salt bridges. These results suggest that the salt bridges seen in the HCN2 COOH-terminal crystal structure are also present in the intact HCN2 channel. Furthermore, the similar effects of the mutations on HCN2 and CNGA1 channels suggest that these salt bridge interactions are also present in the intact CNGA1 channel. As disrupting the interactions leads to channels with more favorable opening transitions, the salt bridges appear to stabilize a closed conformation in both the HCN2 and CNGA1 channels. These results suggest that the HCN2 COOH-terminal crystal structure contains the C-linker regions in the resting configuration even though the CNBD is ligand bound, and channel opening involves a rearrangement of the C-linkers and, thus, disruption of the salt bridges. Discovering that one portion of the COOH terminus, the CNBD, can be in the activated configuration while the other portion, the C-linker, is not activated has lead us to suggest a novel modular gating scheme for HCN and CNG channels.
منابع مشابه
The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.
The recent elucidation of the structure of the carboxyl-terminal region of the hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channel has prompted us to investigate a curious feature of this structure in HCN2 channels and in the related CNGA1 cyclic nucleotide-gated (CNG) channels. The crystallized fragment of the HCN2 channel contains both the cyclic nucleotide-binding domain (...
متن کاملRegulation of Hyperpolarization-Activated Hcn Channel Gating and Camp Modulation Due to Interactions of Cooh Terminus and Core Transmembrane Regions
Members of the hyperpolarization-activated cation (HCN) channel family generate HCN currents (I(h)) that are directly regulated by cAMP and contribute to pacemaking activity in heart and brain. The four different HCN isoforms show distinct biophysical properties. In cell-free patches from Xenopus oocytes, the steady-state activation curve of HCN2 channels is 20 mV more hyperpolarized compared w...
متن کاملDynamics of Ca2+-Calmodulin–dependent Inhibition of Rod Cyclic Nucleotide-gated Channels Measured by Patch-clamp Fluorometry
Cyclic nucleotide-gated (CNG) ion channels mediate cellular responses to sensory stimuli. In vertebrate photoreceptors, CNG channels respond to the light-induced decrease in cGMP by closing an ion-conducting pore that is permeable to cations, including Ca(2+) ions. Rod CNG channels are directly inhibited by Ca(2+)-calmodulin (Ca(2+)/CaM), but the physiological role of this modulation is unknown...
متن کاملMutations reveal voltage gating of CNGA1 channels in saturating cGMP
Activity of cyclic nucleotide-gated (CNG) cation channels underlies signal transduction in vertebrate visual receptors. These highly specialized receptor channels open when they bind cyclic GMP (cGMP). Here, we find that certain mutations restricted to the region around the ion selectivity filter render the channels essentially fully voltage gated, in such a manner that the channels remain most...
متن کاملCapturing Ion Channel Gating
This is a golden age for ion channels: a time when chemistry, molecular biology, and electrophysiology have come together with structural biology to provide glimpses into some truly amazing membrane proteins. And yet, as usual, the answers yield more questions. Is a new structure the structure of an open channel or of a closed one? How does the voltage sensor actually move? Though providing ama...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 124 شماره
صفحات -
تاریخ انتشار 2004