Standing and travelling waves in cylindrical Rayleigh–Bénard convection
نویسنده
چکیده
The Boussinesq equations for Rayleigh–Bénard convection are simulated for a cylindrical container with an aspect ratio near 1.5. The transition from an axisymmetric stationary flow to timedependent flows is studied using nonlinear simulations, linear stability analysis and bifurcation theory. At a Rayleigh number near 25000, the axisymmetric flow becomes unstable to standing or travelling azimuthal waves. The standing waves are slightly unstable to travelling waves. This scenario is identified as a Hopf bifurcation in a system with O(2) symmetry.
منابع مشابه
Standing and travelling waves in cylindrical RayleighBnard convection
The Boussinesq equations for Rayleigh–Bénard convection are simulated for a cylindrical container with an aspect ratio near 1.5. The transition from an axisymmetric stationary flow to time-dependent flows is studied using nonlinear simulations, linear stability analysis and bifurcation theory. At a Rayleigh number near 25 000, the axisymmetric flow becomes unstable to standing or travelling azi...
متن کاملReynolds numbers of the large-scale flow in turbulent Rayleigh-Bénard convection
We measured Reynolds numbers Re of turbulent Rayleigh-Bénard convection over the Rayleighnumber range 2×10 <∼ R <∼ 10 11 and Prandtl-number range 3.3 <∼ σ <∼ 29 for cylindrical samples of aspect ratio Γ = 1. For R <∼ Rc ≃ 3× 10 9 we found Re ∼ R βeff with βeff ≃ 0.46 < 1/2. Here both the σand R-dependences are quantitatively consistent with the Grossmann-Lohse (GL) prediction. For R > Rc we fou...
متن کاملTransition to chaotic patterns in Rayleigh-Bénard convection in rotating cylinders
In rotating Rayleigh Bénard convection, Coriolis force stabilizes the conductive state, and the convective onset increases as rotation increases. The strength of the Coriolis force is represented by the dimensionless rotation rate Ω =2πfd2/ν where f is the rotation frequency. The conductive state becomes unstable to stationary convective parallel rolls as in Rayleigh Bénard convection, but over...
متن کاملInfinite Prandtl Number Limit of Rayleigh-Bénard Convection
We rigorously justify the infinite Prandtl number model of convection as the limit of the Boussinesq approximation to the Rayleigh-Bénard convection as the Prandtl number approaches infinity. This is a singular limit problem involving an initial layer.
متن کاملHeat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0.8 and 3 × 1012 ≲ Ra ≲ 1015: aspect ratio Γ = 0.50
We report on the experimental results for heat-transport measurements, in the form of the Nusselt number Nu, by turbulent Rayleigh–Bénard convection (RBC) in a cylindrical sample of aspect ratio 0 ≡ D/L = 0.50 (D = 1.12m is the diameter and L = 2.24m the height). The measurements were made using sulfur hexafluoride at pressures up to 19 bar as the fluid. They are for the Rayleigh-number range 3...
متن کامل