Computing Néron–severi Groups and Cycle Class Groups
نویسندگان
چکیده
Assuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron–Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension p cycles for any p.
منابع مشابه
On the Néron-severi Groups of Fibered Varieties
We apply Tate’s conjecture on algebraic cycles to study the Néron-Severi groups of varieties fibered over a curve. This is inspired by the work of Rosen and Silverman, who carry out such an analysis to derive a formula for the rank of the group of sections of an elliptic surface. For a semistable fibered surface, under Tate’s conjecture we derive a formula for the rank of the group of sections ...
متن کاملOn the Néron-severi Group of Surfaces with Many Lines
For a binary quartic form φ without multiple factors, we classify the quartic K3 surfaces φ(x, y) = φ(z, t) whose Néron-Severi group is (rationally) generated by lines. For generic binary forms φ, ψ of prime degree without multiple factors, we prove that the Néron-Severi group of the surface φ(x, y) = ψ(z, t) is rationally generated by lines.
متن کاملOn the Torsion of Chow Groups of Severi-brauer Varieties
In this paper, we generalize a result of Karpenko on the torsion in the second quotient of the gamma filtration for Severi-Brauer varieties to higher degrees. As an application, we provide a nontrivial torsion in higher Chow groups and the topological filtration of the associated generic variety and obtain new upper bounds for the annihilators of the torsion subgroups in the Chow groups of a la...
متن کاملSeveri’s Results on Correspondences
Severi developed a theory of correspondences in a series of papers which appeared in 1933, introducing the notions of valences and indices. One of the results achieved by Severi is a formula for the virtual number of fixed points of a correspondence on a smooth projective surface X. These papers are part of Severi’s attempt to develop a theory of the series of equivalences on a surface. In fact...
متن کاملNéron-severi Groups under Specialization
André used Hodge-theoretic methods to show that in a smooth proper family X → B of varieties over an algebraically closed field k of characteristic 0, there exists a closed fiber having the same Picard number as the geometric generic fiber, even if k is countable. We give a completely different approach to André’s theorem, which also proves the following refinement: in a family of varieties wit...
متن کامل