Dynamic Bayesian network for semantic place classification in mobile robotics
نویسندگان
چکیده
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called Dynamic Bayesian Mixture Model (DBMM), which is an improved variation of the Dynamic Bayesian Network (DBN). More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.
منابع مشابه
Bayesian space conceptualization and place classification for semantic maps in mobile robotics
The future of robots, as our companions is dependent on their ability to understand, interpret and represent the environment in a human compatible manner. Towards this aim, this work attempts to create a hierarchical probabilistic concept-oriented representation of space, based onobjects. Specifically, it details efforts taken towards learning and generating concepts and attempts to classify pl...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملCluster Based Cross Layer Intelligent Service Discovery for Mobile Ad-Hoc Networks
The ability to discover services in Mobile Ad hoc Network (MANET) is a major prerequisite. Cluster basedcross layer intelligent service discovery for MANET (CBISD) is cluster based architecture, caching ofsemantic details of services and intelligent forwarding using network layer mechanisms. The cluster basedarchitecture using semantic knowledge provides scalability and accuracy. Also, the mini...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملMulti-modal Semantic Place Classification Multi-modal Semantic Place Classification
The ability to represent knowledge about space and its position therein is crucial for a mobile robot. To this end, topological and semantic descriptions are gaining popularity for augmenting purely metric space representations. In this paper we present a multi-modal place classification system that allows a mobile robot to identify places and recognize semantic categories in an indoor environm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Auton. Robots
دوره 41 شماره
صفحات -
تاریخ انتشار 2017