Lulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure
نویسندگان
چکیده
Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleotide or a carboxy-terminal fragment of Lulu impaired apical constriction during neural plate hinge formation. This effect was likely due to lack of actomyosin contractility in superficial neuroectodermal cells. By contrast, overexpression of Lulu RNA in embryonic ectoderm cells triggered ectopic apico-basal elongation and apical constriction, accompanied by the apical recruitment of F-actin. Depletion of endogenous Lulu disrupted the localization and activity of Shroom3, a PDZ-containing actin-binding protein that has also been implicated in apical constriction. Furthermore, Lulu and Shroom3 RNAs cooperated in triggering ectopic apical constriction in embryonic ectoderm. Our findings reveal that Lulu is essential for Shroom3-dependent apical constriction during vertebrate neural tube closure.
منابع مشابه
Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network.
The actin-binding protein Shroom is essential for neural tube morphogenesis in multiple vertebrate organisms, indicating its function is evolutionarily conserved. Shroom facilitates neurulation by regulating the morphology of neurepithelial cells. Shroom localizes to the apical tip of adherens junctions of neural ectoderm cells in vivo and to the apical junctional complex (AJC) in MDCK cells. I...
متن کاملShroom Induces Apical Constriction and Is Required for Hingepoint Formation during Neural Tube Closure
BACKGROUND The morphogenetic events of early vertebrate development generally involve the combined actions of several populations of cells, each engaged in a distinct behavior. Neural tube closure, for instance, involves apicobasal cell heightening, apical constriction at hingepoints, convergent extension of the midline, and pushing by the epidermis. Although a large number of genes are known t...
متن کاملDifferential Actin-dependent Localization Modulates the Evolutionarily Conserved Activity of Shroom
Shroom is an actin-associated determinant of cell morphology that is required for neural tube closure in both mice and frogs. Shroom regulates this process by causing apical constriction of epithelial cells via a pathway involvingmyosin II.Herewe report on characterization of the Shroom-related proteins Apxl andKIAA1202 and their role in cell architecture. Shroom,Apxl, and KIAA1202 exhibit diff...
متن کاملMorphogenesis: Shroom in to Close the Neural Tube
A novel actin-binding protein, Shroom, localises to precisely those cells that will constrict during cranial neural tube closure and appears pivotal in regulating the apical constrictions that drive epithelial foldings in vertebrate embryos.
متن کاملDifferential actin-dependent localization modulates the evolutionarily conserved activity of Shroom family proteins.
Shroom is an actin-associated determinant of cell morphology that is required for neural tube closure in both mice and frogs. Shroom regulates this process by causing apical constriction of epithelial cells via a pathway involving myosin II. Here we report on characterization of the Shroom-related proteins Apxl and KIAA1202 and their role in cell architecture. Shroom, Apxl, and KIAA1202 exhibit...
متن کامل