WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation.
نویسندگان
چکیده
Viral infection causes activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and cellular antiviral response. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-kappaB and IRF3 activation. Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-kappaB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of type I IFNs.
منابع مشابه
ECSIT bridges RIG-I-like receptors to VISA in signaling events of innate antiviral responses.
Upon binding to RNA structures from invading viruses, RIG-I and MDA5 are recruited to mitochondria to interact with VISA and initiate antiviral type I interferon (IFN) responses. How this process is mediated is less understood. In this report, we demonstrate that ECSIT is an essential scaffolding protein that mediates the association of VISA and RIG-I or MDA5. Overexpression of ECSIT potentiate...
متن کاملTRAF6 Establishes Innate Immune Responses by Activating NF-κB and IRF7 upon Sensing Cytosolic Viral RNA and DNA
BACKGROUND In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor kappaB (NF-kappaB) and IFN regulatory factors (IRFs) in plasma...
متن کاملISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response.
IFN-stimulated gene 56 (ISG56) is one of the first identified proteins induced by viruses and type I IFNs. In this study, we identified ISG56 as a virus-induced protein associated with MITA, an adapter protein involved in virus-triggered induction of type I IFNs. Overexpression of ISG56 inhibited Sendai virus-triggered activation of IRF3, NF-kappaB, and the IFN-beta promoter, whereas knockdown ...
متن کاملAutoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response.
The transcription factors IRF3 and NF-κB are required for the expression of many genes involved in antiviral innate immune response, including type I interferons (IFNs) and proinflammatory cytokines. It is well established that TBK1 is an essential kinase engaged downstream of multiple pattern-recognition receptors (PRRs) to mediate IRF3 phosphorylation and activation, whereas the precise mecha...
متن کاملMAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.
The mitochondrial antiviral signaling (MAVS) protein plays a central role in innate antiviral immunity. Upon recognition of a virus, intracellular receptors of the RIG-I-like helicase family interact with MAVS to trigger a signaling cascade. In this study, we investigate the requirement of the MAVS structure for enabling its signaling by structure-function analyses and resonance energy transfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2010