Protective role of 1,25(OH)2vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice

نویسندگان

  • Hongwei Zhao
  • Hong Zhang
  • Hui Wu
  • Hui Li
  • Lei Liu
  • Jian Guo
  • Chenyang Li
  • David Q Shih
  • Xiaolan Zhang
چکیده

BACKGROUND Intestinal hyper-permeability plays a critical role in the etiopathogenesis of inflammatory bowel disease (IBD) by affecting the penetration of pathogens, toxic compounds and macromolecules. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, has been shown to be an important regulator of IBD and recent epidemiology suggests that patients with IBD have an impaired vitamin D status. The purpose of this study is to investigate the possible protective effects of 1,25(OH)2D3 on mucosal injury and epithelial barrier disruption on dextran sulfate sodium (DSS)-induced acute colitis model. METHODS We used DSS-induced acute colitis model to investigate the protective effects of 1,25(OH)2D3 on mucosal injury and epithelial barrier integrity. Severity of colitis was evaluated by disease activity index (DAI), body weight (BW) change, colon length, histology, myeloperoxidase (MPO) activity, and proinflammatory cytokine production including tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). In vitro the protective role of 1,25(OH)2D3 was assessed by incubating Caco-2 cells with or without DSS and measuring transepithelial electrical resistance (TEER) and fluorescein isothiocyanate dextran (FITC-D). The intestinal permeability was analyzed by FITC-D, bacterial translocation and measurement of lipopolysaccharide (LPS). Ultrastructural features of the colon tissue and Caco-2 cell monolayer were observed by electron microscopy. Expressions of tight junction (TJ) proteins in the colon mucosa and Caco-2 cells were detected by immunohistochemistry, immunofluorescence, Western blot and real-time fluorescent quantitative PCR, respectively. RESULTS DSS-induced acute colitis model was characterized by a reduced BW, AUC of BW, serum calcium, higher DAI, AUC of DAI, shortened colon length, elevated MPO activity, worsened histologic inflammation, increased mononuclear cell numbers in mesenteric lymph nodes (MLNs) and colonic lamina propria (LP), and enhanced proteins and mRNA levels of TNF-α and IFN-γ. 1,25(OH)2D3 markedly increased expressions of TJ proteins and mRNA and decreased the FITC-D permeability and the level of LPS. Furthermore, 1,25(OH)2D3 abrogated bacterial translocation to MLNs and ameliorated ultrastructural features of the colon epithelium by scanning electron microscopy (SEM). In vitro, 1,25(OH)2D3 increased TEER, TJ proteins and mRNA expressions, decreased the FITC-D permeability, and preserved structural integrity of the TJ in Caco-2 cells. CONCLUSIONS 1,25(OH)2D3 may play a protective role in mucosal barrier homeostasis by maintaining the integrity of junction complexes and in healing capacity of the colon epithelium. 1,25(OH)2D3 may represent an attractive and novel therapeutic agent for the adjuvant therapy of IBD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier.

Emerging evidence supports a pathological link between vitamin D deficiency and the risk of inflammatory bowel disease (IBD). To explore the mechanism we used the dextran sulfate sodium (DSS)-induced colitis model to investigate the role of the vitamin D receptor (VDR) in mucosal barrier homeostasis. While VDR(+/+) mice were mostly resistant to 2.5% DSS, VDR(-/-) mice developed severe diarrhea,...

متن کامل

Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice

Objective(s): Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice.Materials and Methods: Thirty mice were randomly assigned int...

متن کامل

Regulation of serum 1,25(OH)2Vitamin D3 levels by fibroblast growth factor

Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2Vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol 301: F371–F377, 2011. First published May 11, 2011; doi:10.1152/ajprenal.00740.2010.—Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone implicated in the pathogenesis of several hypophosph...

متن کامل

1,25-Dihydroxyvitamin D3 prevents toluene diisocyanate-induced airway epithelial barrier disruption.

The loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Evidence suggests that vitamin D plays an important role in the prevention and treatment of asthma. However, its role in airway epithelial barrier function remains uncertain. We have previously demonstrated impaired epithelial junctions in a model of toluene diisocyanate (TDI)-induced asthma. In the presen...

متن کامل

Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060.

The 1,25-dihydroxyvitamin D3 [1,25-(OH)2vitamin D3] analog KH1060 exerts very potent effects on cell proliferation and cell differentiation via the vitamin D receptor (VDR). However, the activities of KH1060 are not associated with an increased affinity for the VDR. We now show that increased stabilization of the VDR-KH1060 complex could be an explanation for its high potencies. VDR half-life s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012