Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*
نویسندگان
چکیده
BACKGROUND Vascular endothelial growth factor receptor-2 (VEGFR-2, KDR), a receptor tyrosine kinase, regulates mitogenic, chemotactic, hyperpermeability, and survival signals in vascular endothelial cells in response to its ligand vascular permeability factor/ vascular endothelial growth factor (VPF/VEGF). SHP-1 is a protein tyrosine phosphatase known to negatively regulate signaling from receptors such as EGF receptor, IL3 receptor, erythropoietin receptor and also KDR. However, the mechanism by which SHP-1 executes KDR dephosphorylation, the targeted tyrosine residue(s) of KDR and also overall downstream signaling or phenotypic change(s) caused, is not defined. RESULTS Here, we have demonstrated that KDR and SHP-1 are constitutively associated and upon VEGF treatment, the phosphatase activity of SHP-1 is stimulated in a c-Src kinase dependent manner. Knockdown of SHP-1 by siRNA or inhibition of c-Src by an inhibitor, results in augmented DNA synthesis perhaps due to increased phosphorylation of at least three tyrosine residues of KDR 996, 1059 and 1175. On the other hand, neither tyrosine residue 951 of KDR nor VEGF-mediated migration is affected by modulation of SHP-1 function. CONCLUSION Taken together our results define the tyrosine residues of KDR that are regulated by SHP-1 and also elucidates a novel feed back loop where SHP-1 is activated upon VEGF treatment through c-Src and controls KDR induced DNA synthesis, eventually leading to controlled angiogenesis.
منابع مشابه
Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2.
Vascular endothelial growth factor (VEGF)-induced receptor phosphorylation is the crucial step for initiating downstream signaling pathways that lead to angiogenesis or related pathophysiological outcomes. Our previous studies have shown that the neurotransmitter dopamine could inhibit VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), endothelial cell proliferation, migration, microvas...
متن کاملThrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells.
Thrombospondin-1 (TSP-1) inhibits growth factor signaling at the receptor level in microvascular endothelial cells (MVEC), and CD36 has been suggested to be involved in this inhibition, but the mechanisms are not known. We hypothesized that CD36-TSP-1 interaction recruits Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 to the vascular endothelial growth factor receptor 2 (...
متن کاملSrc homology region 2 (SH2) domain-containing phosphatase-1 dephosphorylates B cell linker protein/SH2 domain leukocyte protein of 65 kDa and selectively regulates c-Jun NH2-terminal kinase activation in B cells.
Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1) is a cytosolic protein tyrosine phosphatase containing two SH2 domains in its NH2 terminus. That immunological abnormalities of the motheaten and viable motheaten mice are caused by mutations in the gene encoding SHP-1 indicates that SHP-1 plays important roles in lymphocyte differentiation, proliferation, and activation. To el...
متن کاملA novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion.
Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Molecular Signaling
دوره 3 شماره
صفحات -
تاریخ انتشار 2008