Autoreducibility of NP-Complete Sets

نویسندگان

  • John M. Hitchcock
  • Hadi Shafei
چکیده

We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following: • For every k ≥ 2, there is a k-T-complete set for NP that is k-T autoreducible, but is not k-tt autoreducible or (k − 1)-T autoreducible. • For every k ≥ 3, there is a k-tt-complete set for NP that is k-tt autoreducible, but is not (k − 1)-tt autoreducible or (k − 2)-T autoreducible. • There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible. Under the stronger assumption that there is a p-generic set in NP ∩ coNP, we show: • For every k ≥ 2, there is a k-tt-complete set for NP that is k-tt autoreducible, but is not (k − 1)-T autoreducible. Our proofs are based on constructions from separating NP-completeness notions. For example, the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-Tautoreducibility from 2-tt-autoreducibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-mitotic Sets

We study the question of the existence of non-mitotic sets in NP. We show under various hypotheses that • 1-tt-mitoticity and m-mitoticity differ on NP. • 1-tt-reducibility and m-reducibility differ on NP. • There exist non-T-autoreducible sets in NP (by a result from Ambos-Spies, these sets are neither T-mitotic nor m-mitotic). • T-autoreducibility and T-mitoticity differ on NP (this contrasts...

متن کامل

Redundancy in Complete Sets

We show that a set is m-autoreducible if and only if it is m-mitotic. This solves a long standing open question in a surprising way. As a consequence of this unconditional result and recent work by Glaßer et al. [11], complete sets for all of the following complexity classes are m-mitotic: NP, coNP, ⊕P, PSPACE, and NEXP, as well as all levels of PH, MODPH, and the Boolean hierarchy over NP. In ...

متن کامل

Autoreducibility and Mitoticity of Logspace-Complete Sets for NP and Other Classes

We study the autoreducibility and mitoticity of complete sets for NP and other complexity classes, where the main focus is on logspace reducibilities. In particular, we obtain: • For NP and all other classes of the PH: each ≤ m -complete set is ≤ log T -autoreducible. • For P, ∆pk, NEXP: each ≤ m -complete set is a disjoint union of two ≤ log 2-tt-complete sets. • For PSPACE: each ≤pdtt-complet...

متن کامل

Splitting NP-Complete Sets

We show that a set is m-autoreducible if and only if it is m-mitotic. This solves a long standing open question in a surprising way. As a consequence of this unconditional result and recent work by Glaßer et al., complete sets for all of the following complexity classes are m-mitotic: NP, coNP, ⊕P, PSPACE, and NEXP, as well as all levels of PH, MODPH, and the Boolean hierarchy over NP. In the c...

متن کامل

Complexity Theory Column 64

Autoreducibility and mitoticity express weak forms of redundancy of information that a set might possess. We describe many results known about these concepts. Mitoticity always implies autoreducibility, but the converse holds in some situations and fails in others. Among the results we describe are that NP-complete sets are many-one autoreducible and that every many-one autoreducible set is man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016