SAS: Implementation of scaled association rules on spatial multidimensional quantitative dataset

نویسندگان

  • M. N. Doja
  • Sapna Jain
  • M Afshar Alam
چکیده

Mining spatial association rules is one of the most important branches in the field of Spatial Data Mining (SDM). Because of the complexity of spatial data, a traditional method in extracting spatial association rules is to transform spatial database into general transaction database. The Apriori algorithm is one of the most commonly used methods in mining association rules at present. But a shortcoming of the algorithm is that its performance on the large database is inefficient. The present paper proposed a new algorithm by extracting maximum frequent itemsets based on spatial multidimensional quantitative dataset. Algorithms for mining spatial association rules are similar to association rule mining except consideration of special data, the predicates generation and rule generation processes are based on Apriori. The proposed method (SAS) Scaled Aprori on Spatial multidimensional quantitative dataset in the paper reduces the number of itemsets generated and also improves the execution time of the algorithm. Keywordsassociation rules; spatial dataset; X tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

Multidimensional Quantitative Rule Generation

Data mining is a technology development in the present decade for guiding decision making. One of the main applications of data mining is exploration of Association Rules. The objective of the research is to find out the association rules for the sample dataset to find out the interesting and useful rules. A lot of modifications have been suggested over the last two decades for the traditional ...

متن کامل

A Novel Algorithm for Mining Hybrid-Dimensional Association Rules

The important issue for association rules generation is the discovery of frequent itemset in data mining. Most of the existing real time transactional databases are multidimensional in nature. The classical Apriori algorithm mainly concerned with handling single level, single-dimensional boolean association rules. These algorithms scan the transactional databases or datasets many times to find ...

متن کامل

A Novel Algorithm for Mining Hybrid-Dimensional Association Rules

The important issue for association rules generation is the discovery of frequent itemset in data mining. Most of the existing real time transactional databases are multidimensional in nature. The classical Apriori algorithm mainly concerned with handling single level, single-dimensional boolean association rules. These algorithms scan the transactional databases or datasets many times to find ...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012