Potential role of tedizolid phosphate in the treatment of acute bacterial skin infections
نویسندگان
چکیده
Tedizolid phosphate (TR-701), a prodrug of tedizolid (TR-700), is a next-generation oxazolidinone that has shown favorable results in the treatment of acute bacterial skin and skin-structure infections in its first Phase III clinical trial. Tedizolid has high bioavailability, penetration, and tissue distribution when administered orally or intravenously. The activity of tedizolid was greater than linezolid against strains of Staphylococcus spp., Streptococcus spp., and Enterococcus spp. in vitro studies, including strains resistant to linezolid and those not susceptible to vancomycin or daptomycin. Its pharmacokinetic characteristics allow for a once-daily administration that leads to a more predictable efficacy and safety profile than those of linezolid. No hematological adverse effects have been reported associated with tedizolid when used at the therapeutic dose of 200 mg in Phase I, II, or III clinical trials of up to 3 weeks of tedizolid administration. Given that the clinical and microbiological efficacy are similar for the 200, 300, and 400 mg doses, the lowest effective dose of 200 mg once daily for 6 days was selected for Phase III studies in acute bacterial skin and skin-structure infections, providing a safe dosing regimen with low potential for development of myelosuppression. Unlike linezolid, tedizolid does not inhibit monoamine oxidase in vivo, therefore interactions with adrenergic, dopaminergic, and serotonergic drugs are not to be expected. In conclusion, tedizolid is a novel antibiotic with potent activity against Gram-positive microorganisms responsible for skin and soft tissue infections, including strains resistant to vancomycin, linezolid, and daptomycin, thus answers a growing therapeutic need.
منابع مشابه
Critical role of tedizolid in the treatment of acute bacterial skin and skin structure infections
Tedizolid phosphate has high activity against the Gram-positive microorganisms mainly involved in acute bacterial skin and skin structure infections, such as strains of Staphylococcus aureus (including methicillin-resistant S. aureus strains and methicillin-sensitive S. aureus strains), Streptococcus pyogenes, Streptococcus agalactiae, the Streptococcus anginosus group, and Enterococcus faecali...
متن کاملOritavancin (Orbactiv): A New-Generation Lipoglycopeptide for the Treatment Of Acute Bacterial Skin and Skin Structure Infections.
Oritavancin (Orbactiv): a new-generation lipoglycopeptide for the treatment of acute bacterial skin and skin structure infections.
متن کاملTedizolid Phosphate: a Next-Generation Oxazolidinone
Treatment of multidrug-resistant Gram-positive infections continues to challenge clinicians as the emergence of new resistance mechanisms outpaces introduction of novel antimicrobial agents. Tedizolid phosphate is a next-generation oxazolidinone with activity against both methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus spp. Tedizolid has consistently shown pote...
متن کاملTedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial.
IMPORTANCE Acute bacterial skin and skin structure infections (ABSSSIs), including cellulitis or erysipelas, major cutaneous abscesses, and wound infections, can be life-threatening and may require surgery and hospitalization. Increasingly, ABSSSIs are associated with drug-resistant pathogens, and many antimicrobial agents have adverse effects restricting their use. Tedizolid phosphate is a nov...
متن کاملSystematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA
BACKGROUND Tedizolid, the active moiety of tedizolid phosphate, is approved in the United States, the European Union, Canada and a number of other countries for the treatment of acute bacterial skin and skin structure infections (ABSSSI) caused by certain susceptible bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). This network meta-analysis (NMA) evaluates the comparativ...
متن کامل