Generalized and Improved (G′/G)-Expansion Method for (3+1)-Dimensional Modified KdV-Zakharov-Kuznetsev Equation
نویسندگان
چکیده
The generalized and improved (G'/G)-expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple.
منابع مشابه
Exact traveling wave solutions of some nonlinear evolution equations
Using a traveling wave reduction technique, we have shown that Maccari equation, (2?1)-dimensional nonlinear Schrödinger equation, medium equal width equation, (3?1)-dimensional modified KdV–Zakharov– Kuznetsev equation, (2?1)-dimensional long wave-short wave resonance interaction equation, perturbed nonlinear Schrödinger equation can be reduced to the same family of auxiliary elliptic-like equ...
متن کاملA Generalized and Improved G′/G -Expansion Method for Nonlinear Evolution Equations
A generalized and improved G′/G -expansion method is proposed for finding more general type and new travelling wave solutions of nonlinear evolution equations. To illustrate the novelty and advantage of the proposed method, we solve the KdV equation, the Zakharov-KuznetsovBenjamin-Bona-Mahony ZKBBM equation and the strain wave equation in microstructured solids. Abundant exact travelling wave s...
متن کاملThe Improved (G'/G)-Expansion Method for the (2+1)-Dimensional Modified Zakharov-Kuznetsov Equation
we apply the improved G′/G -expansion method for constructing abundant new exact traveling wave solutions of the 2 1 -dimensional Modified Zakharov-Kuznetsov equation. In addition, G ′′ λG′ μG 0 together with b α ∑w q −w pq G ′/G q is employed in this method, where pq q 0,±1,±2, . . . ,±w , λ and μ are constants. Moreover, the obtained solutions including solitons and periodic solutions are des...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation and viscous Burgers equation
ABSTRACT Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modif...
متن کامل