Lactate shuttles in nature.
نویسنده
چکیده
Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously under fully aerobic conditions. "Cell-cell" and "intracellular lactate shuttle" concepts describe the roles of lactate in the delivery of oxidative and gluconeogenic substrates, as well as in cell signalling. Examples of cell-cell shuttles include lactate exchanges between white-glycolytic and red-oxidative fibres within a working muscle bed, between working skeletal muscle and heart, and between tissues of net lactate release and gluconeogenesis. Lactate exchange between astrocytes and neurons that is linked to glutamatergic signalling in the brain is an example of a lactate shuttle supporting cell-cell signalling. Lactate uptake by mitochondria and pyruvate-lactate exchange in peroxisomes are examples of intracellular lactate shuttles. Lactate exchange between sites of production and removal is facilitated by monocarboxylate transport proteins, of which there are several isoforms, and, probably, also by scaffolding proteins. The mitochondrial lactate-pyruvate transporter appears to work in conjunction with mitochondrial lactate dehydrogenase, which permits lactate to be oxidized within actively respiring cells. Hence mitochondria function to establish the concentration and proton gradients necessary for cells with high mitochondrial densities (e.g. cardiocytes) to take up and oxidize lactate. Arteriovenous difference measurements on working cardiac and skeletal muscle beds as well as NMR spectral analyses of these tissues show that lactate is formed and oxidized within the cells of formation in vivo. Glycolysis and lactate oxidation within cells permits high flux rates and the maintenance of redox balance in the cytosol and mitochondria. Other examples of intracellular lactate shuttles include lactate uptake and oxidation in sperm mitochondria and the facilitation of beta-oxidation in peroxisomes by pyruvate-lactate exchange. An ancient origin to the utility of lactate shuttling is implied by the observation that mitochondria of Saccharomyces cerevisiae contain flavocytochrome b(2), a lactate-cytochrome c oxidoreductase that couples lactate dehydrogenation to the reduction of cytochrome c. The presence of cell-cell and intracellular lactate shuttles gives rise to the notion that glycolytic and oxidative pathways can be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.
منابع مشابه
Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments
Hypoxia and oncogene expression both stimulate glycolytic metabolism in tumors, thereby leading to lactate production. However, lactate is more than merely a by-product of glycolysis: it can be used as a metabolic fuel by oxidative cancer cells. This phenomenon resembles processes that have been described for skeletal muscle and brain that involve what are known as cell-cell and intracellular l...
متن کاملLactate Shuttles in Neuroenergetics—Homeostasis, Allostasis and Beyond
Understanding brain energy metabolism-neuroenergetics-is becoming increasingly important as it can be identified repeatedly as the source of neurological perturbations. Within the scientific community we are seeing a shift in paradigms from the traditional neurocentric view to that of a more dynamic, integrated one where astrocytes are no longer considered as being just supportive, and activate...
متن کاملEvidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles
To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitoch...
متن کاملLactate metabolism: a new paradigm for the third millennium.
For much of the 20th century, lactate was largely considered a dead-end waste product of glycolysis due to hypoxia, the primary cause of the O2 debt following exercise, a major cause of muscle fatigue, and a key factor in acidosis-induced tissue damage. Since the 1970s, a 'lactate revolution' has occurred. At present, we are in the midst of a lactate shuttle era; the lactate paradigm has shifte...
متن کاملColocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex.
Results of previous studies suggested a role of mitochondria in intracellular and cell-cell lactate shuttles. Therefore, by using a rat-derived L6 skeletal muscle cell line and confocal laser-scanning microscopy (CLSM), we examined the cellular locations of mitochondria, lactate dehydrogenase (LDH), the lactate-pyruvate transporter MCT1, and CD147, a purported chaperone protein for MCT1. CLSM s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2002