Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity
نویسندگان
چکیده
A novel enzyme with lysine-epsilon oxidase activity was previously described in the marine bacterium Marinomonas mediterranea. This enzyme differs from other l-amino acid oxidases in not being a flavoprotein but containing a quinone cofactor. It is encoded by an operon with two genes lodA and lodB. The first one codes for the oxidase, while the second one encodes a protein required for the expression of the former. Genome sequencing of M. mediterranea has revealed that it contains two additional operons encoding proteins with sequence similarity to LodA. In this study, it is shown that the product of one of such genes, Marme_1655, encodes a protein with glycine oxidase activity. This activity shows important differences in terms of substrate range and sensitivity to inhibitors to other glycine oxidases previously described which are flavoproteins synthesized by Bacillus. The results presented in this study indicate that the products of the genes with different degrees of similarity to lodA detected in bacterial genomes could constitute a reservoir of different oxidases.
منابع مشابه
Complete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1T).
Marinomonas mediterranea MMB-1(T) Solano & Sanchez-Amat 1999 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. This species is of interest because it is the only species described in the genus Marinomonas to date that can synthesize melanin pigments, which is mediated by the activity of a tyrosinase. M. mediterranea expresses other oxidases of biotechnological interest,...
متن کاملRegulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: identification of ppoS, a gene encoding a sensor histidine kinase.
Marinomonas mediterranea is a melanogenic marine bacterium that expresses two different polyphenol oxidases. One of them is a multipotent laccase able to oxidize a wide range of substrates. The second enzyme is an SDS-activated tyrosinase. Using transposon mutagenesis, a mutant affected in the regulation of both polyphenol oxidase activities and melanogenesis has been isolated. The sequencing o...
متن کاملFinding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea
The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the co...
متن کاملMarinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies.
The melanogenic marine bacterium Marinomonas mediterranea synthesizes R-bodies as revealed by transmission electron microscopy. These structures were previously described in some obligate symbionts of paramecia and some free-living bacteria, none of which was isolated from sea water. In other micro-organisms, the synthesis of R-bodies has been related to extrachromosomal elements. Accordingly, ...
متن کاملTaxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov.
Novel aerobic, Gram-negative bacteria with DNA G+C contents below 50 mol% were isolated from the culturable microbiota associated with the Mediterranean seagrass Posidonia oceanica. 16S rRNA gene sequence analyses revealed that they belong to the genus Marinomonas. Strain IVIA-Po-186 is a strain of the species Marinomonas mediterranea, showing 99.77 % 16S rRNA gene sequence similarity with the ...
متن کامل