Hydrophobic interaction chromatography correctly refolding proteins assisted by glycerol and urea gradients.

نویسندگان

  • Jing-Jing Li
  • Yong-Dong Liu
  • Fang-Wei Wang
  • Guang-Hui Ma
  • Zhi-Guo Su
چکیده

Chromatographic columns packed with commercially available hydrophobic interaction chromatography (HIC) media were found to be able to suppress aggregation and nevertheless had a tendency to promote the structural misfolding resulting in higher soluble protein recovery and lower specific activity than that by dilution when they were used to refold lysozyme, a model protein. Moreover, this misfolding effect was exacerbated with increasing hydrophobicity of media. A novel strategy involving the combination of glycerol, a typical osmolyte, a urea gradient and commercially available HIC media was introduced to facilitate protein refolding correctly as well as improve mass recovery by providing a gradual change of the refolding environment in the HIC column. In this process, unfolded lysozyme was bound to Poros PE HIC column at high salt concentration and was released by a urea gradient followed by elution with refolding buffer in the presence of 50 % (v/v) glycerol, resulting in 86.3% activity yield and 85% mass recovery with the refolded product of native specific activity. For the absence of glycerol, only 50.9% activity yield and 59% specific activity recovery was obtained although mass recovery was closed to that in the presence of glycerol. It was also discovered that glycerol addition during elution process was necessary for correct refolding compared to mixing of glycerol with post-column fraction. The possible mechanism for refolding with this system was proposed to be relevant to the formation of an on-pathway intermediate that could slowly reactivate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refolding Process of Cysteine-Rich Proteins: Chitinase as a Model

Background: Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain nat...

متن کامل

Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes i...

متن کامل

Cooperative effects of urea and L-arginine on protein refolding.

The use of low concentrations of urea, guanidinium chloride or arginine has been reported in the literature to increase protein refolding and yield of active proteins by suppressing aggregate formation. However, no studies have yet examined whether these substances can exert synergistic or cooperative effects when used in combination. In this work, a comparative study was carried out on refoldi...

متن کامل

A New Approach for Characterizing the Intermediate Feature of α-Chymotrypsin Refolding by Hydrophobic Interaction Chromatography

A new approach for characterizing the intermediate of urea-denatured alpha-chymotrypsin (alpha-Chy) by hydrophobic interaction chromatography (HIC) is presented. The contact surface region (Z, S), affinity (logI), and the character of interaction force (j) of the alpha-Chy to the stationary phase of HIC (STHIC) between the intermediate (M) and native (N) states were found to be quite different ...

متن کامل

A Simplified Process for Purification and Refolding of Recombinant Human Interferon-α2b

Background: Interferon α-2b is a vital biotherapeutic produced through the recombinant DNA technology in E. coli. The recombinant IFN-α2b normally appears as intercellular IBs, which requires intensive refolding and purification steps. Method: Purification of IFN-α2b from solubilized IB was performed using two-phase extraction. To optimize refolding conditions, the effects of pH and different a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatography. A

دوره 1061 2  شماره 

صفحات  -

تاریخ انتشار 2004