Cohen-macaulayness of Rees Algebras of Diagonal Ideals
نویسنده
چکیده
Given two determinantal rings over a field k, we consider the Rees algebra of the diagonal ideal, the kernel of the multiplication map. The special fiber ring of the diagonal ideal is the homogeneous coordinate ring of the secant variety. When the Rees algebra and the symmetric algebra coincide, we show that the Rees algebra is CohenMacaulay.
منابع مشابه
Cohen-macaulayness of Rees Algebras of Modules
We provide the sufficient conditions for Rees algebras of modules to be Cohen-Macaulay, which has been proven in the case of Rees algebras of ideals in [11] and [4]. As it turns out the generalization from ideals to modules is not just a routine generalization, but requires a great deal of technical development. We use the technique of generic Bourbaki ideals introduced by Simis, Ulrich and Vas...
متن کاملRees Algebras of Modules
We study Rees algebras of modules within a fairly general framework. We introduce an approach through the notion of Bourbaki ideals that allow the use of deformation theory. One can talk about the (essentially unique) Bourbaki ideal I(E) of a module E which, in many situations, allows to reduce the nature of the Rees algebra of E to that of its Bourbaki ideal I(E). Properties such as Cohen–Maca...
متن کاملThe Koszul Homology of an Ideal
Recently many researchers have worked on problems connected with various graded algebras associated to an ideal I in a local ring R. Two algebras in particular have received the most attention: the associated graded algebra of Z, gr,( R) = R/Z@ Z/Z’@ ... , and the Rees algebra of Z, defined to be R[Zt]. Brodmann [2] and Goto and Shimoda [9] have studied the local cohomology of R[Zr] for certain...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملTensor products of Cohen - Macaulay rings Solution to a problem of
In this paper we solve a problem, originally raised by Grothendieck, on the transfer of Cohen-Macaulayness to tensor products of algebras over a field k. As a prelude to this, we investigate the grade for some specific types of ideals that play a primordial role within the ideal structure of such constructions.
متن کامل