Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives.
نویسندگان
چکیده
Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.
منابع مشابه
Lateral spin injection in germanium nanowires.
Electrical injection of spin-polarized electrons into a semiconductor, large spin diffusion length, and an integration friendly platform are desirable ingredients for spin-based devices. Here we demonstrate lateral spin injection and detection in germanium nanowires, by using ferromagnetic metal contacts and tunnel barriers for contact resistance engineering. Using data measured from over 80 sa...
متن کاملElectrical spin injection and detection in silicon nanowires through oxide tunnel barriers.
We demonstrate all-electrical spin injection, transport, and detection in heavily n-type-doped Si nanowires using ferromagnetic Co/Al(2)O(3) tunnel barrier contacts. Analysis of both local and nonlocal spin valve signals at 4 K on the same nanowire device using a standard spin-transport model suggests that high spin injection efficiency (up to ~30%) and long spin diffusion lengths (up to ~6 μm)...
متن کاملDecoherence of transported spin in multichannel spin-orbit-coupled spintronic devices: Scattering approach to spin-density matrix from the ballistic to the localized regime
By viewing current in the detecting lead of a spintronic device as being an ensemble of flowing spins corresponding to a mixed quantum state, where each spin itself is generally described by an improper mixture generated during the transport where it couples to other degrees of freedom due to spin-orbit sSOd interactions or inhomogeneous magnetic fields, we introduce the spin-density operator a...
متن کاملLarge spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires
Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitr...
متن کاملTheoretical Perspectives on Spintronics and Spin-Polarized Transport
Selected problems of fundamental importance for spintronics and spin-polarized transport are reviewed, some of them with a special emphasis on their applications in quantum computing and coherent control of quantum dynamics. The role of the solid-state environment in the decoherence of electron spins is discussed. In particular, the limiting effect of the spin-orbit interaction on spin relaxati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 10 شماره
صفحات -
تاریخ انتشار 2015