Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation
نویسندگان
چکیده
In this paper, we investigate a class of fuzzy CohenGrossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper. Keywords—Fuzzy Cohen-Grossberg neural networks(FCGNNs), Complete synchronization, Time delays, Impulsive, Noise perturbation.
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملAnalysis of stability for impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays is considered. Based on M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and global exponential stability in mean square means of the equilibrium point for the addressed impulsive st...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملStability of Cohen-Grossberg Neural Networks with Impulsive and Mixed Time Delays
In this paper, the problem of stability analysis for a class of impulsive Cohen-Grossberg neural networks with mixed time delays is considered. The mixed time delays comprise both the time-varying and distributed delays. By employing a combination of the M -matrix theory and analytic methods, several sufficient conditions are obtained to ensure the global exponential stability of equilibrium po...
متن کامل