Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands
نویسندگان
چکیده
In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF) Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions.
منابع مشابه
Agricultural wetland restorations on the USA Atlantic Coastal Plain achieve diverse native wetland plant communities but differ from natural wetlands
Wetland restoration is globally important for offsetting effects of wetland loss and degradation but is not consistently successful. Vegetation studies provide insight into the effectiveness of restoring wetland ecosystem functions. We compared plant community composition in 47 non-tidal wetlands under different management (natural, restored, and former wetlands that had been converted to cropl...
متن کاملStructural and Functional Loss in Restored Wetland Ecosystems
Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem...
متن کاملVegetation Development in a Tidal Marsh Restoration Project during a Historic Drought: A Remote Sensing Approach
Tidal wetland restoration efforts can be challenging to monitor in the field due to unstable local conditions and poor site access. However, understanding how restored systems evolve over time is essential for future management of their ecological benefits, many of which are related to vegetation dynamics. Physical attributes, such as elevation and distance to channel play important roles in go...
متن کاملCreating Wetlands: Primary Succession, Water Quality Changes, and Self-Design over 15 Years
The succession of vegetation, soil development, water quality changes, and carbon and nitrogen dynamics are summarized in this article for a pair of 1-hectare flow-through-created riverine wetlands for their first 15 years. Wetland plant richness increased from 13 originally planted species to 116 species overall after 15 years, with most of the increase occurring in the first 5 years. The plan...
متن کاملHabitat- and soil-related drivers of the root-associated fungal community of Quercus suber in the Northern Moroccan forest
Soil fungi associated with plant roots, notably ectomycorrhizal (EcM) fungi, are central in above- and below-ground interactions in Mediterranean forests. They are a key component in soil nutrient cycling and plant productivity. Yet, major disturbances of Mediterranean forests, particularly in the Southern Mediterranean basin, are observed due to the greater human pressures and climate changes....
متن کامل