S4 : A free electromagnetic solver for layered periodic structures
نویسندگان
چکیده
We describe S4, a free implementation of the Fourier modal method (FMM), which has also been commonly referred to as rigorous coupled wave analysis (RCWA), for simulating electromagnetic propagation through 3D structures with 2D periodicity. We detail design aspects that allow S4 to be a flexible platform for these types of simulations. In particular, we highlight the ability to select different FMM formulations, user scripting, and extensibility of program capabilities for eigenmode computations.
منابع مشابه
Complementary Periodic Structures for Miniaturization of Planar Antennas
In this paper various layered planar periodic structures which provide miniaturization of planar antennas are proposed and discussed. The proposed designs are based on two concepts, reactive impedance surfaces and complementary periodic structures. In the proposed structures, complementary periodic rings and slots are patterned on the intermediate boundaries of the dielectric layers. A patch an...
متن کاملFinite Element Simulation of Light Propagation in Non-Periodic Mask Patterns
Rigorous electromagnetic field simulations are an essential part for scatterometry and mask pattern design. Today mainly periodic structures are considered in simulations. Non-periodic structures are typically modeled by large, artificially periodified computational domains. For systems with a large radius of influence this leads to very large computational domains to keep the error sufficientl...
متن کاملGeneral Formulation to Investigate Scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structures
This paper presents a general formulation to investigate the scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structure (MLIMPS) with arbitrary number of layers and polarization. First, the dominating differential equation of transverse components of electromagnetic fields in each layers derived. Considering the general form of solution of the differential equations and the bo...
متن کاملOptimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.
We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mi...
متن کاملExploiting Periodicity and Other Structural Symmetries in Field Solvers
._ leads to faster and/or more accurate solutions. Of particular interest to the accelerator community are periodic structures. Quasi-periodic boundary conditions allow modes with any desired phase advance given a single cell of the periodic structure. For symmetric periodic structures there is a variation which requires only a half cell of the periodic structure. These boundary conditions can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 183 شماره
صفحات -
تاریخ انتشار 2012