Sparse matrix decomposition with optimal load balancing

نویسندگان

  • Ali Pinar
  • Cevdet Aykanat
چکیده

Optimal load balancing in sparse matrix decomposition without disturbing the row/column ordering is investigated. Both asymptotically and run-time efficient exact algorithms are proposed and implemented for one-dimensional (1D) striping and two-dimensional (2D) jagged partitioning. Binary search method is successfully adopted to 1D striped decomposition by deriving and exploiting a good upper bound on the value of an optimal solution. A binary search algorithm is proposed for 2D jagged partitioning by introducing a new 2D probing scheme. A new iterative-refinement scheme is proposed for both 1D and 2D partitioning. Proposed algorithms are also space efficient since they only need the conventional compressed storage scheme for the given matrix, avoiding the need for a dense workload matrix in 2D decomposition. Experimental results on a wide set of test matrices show that considerably better decompositions can be obtained by using optimal load balancing algorithms instead of heuristics. Proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication (SpMxV), in the 64-way 1D decompositions, on the overall average. Our jagged partitioning algorithms are only 60% slower than a single SpMxV computation in the 8 8-way 2D decompositions, on the overall average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix-Vector Multiplication

In this paper, we present a new graph model of sparse matrix decomposition for parallel sparse matrix–vector multiplication. Our model differs from previous graph-based approaches in two main respects. Firstly, our model is based on edge colouring rather than vertex partitioning. Secondly, our model is able to correctly quantify and minimise the total communication volume of the parallel sparse...

متن کامل

Hypergraph Models for Sparse Matrix Partitioning and Reordering

HYPERGRAPH MODELS FOR SPARSE MATRIX PARTITIONING AND REORDERING  Umit V. C ataly urek Ph.D. in Computer Engineering and Information Science Supervisor: Assoc. Prof. Cevdet Aykanat November, 1999 Graphs have been widely used to represent sparse matrices for various scienti c applications including one-dimensional (1D) decomposition of sparse matrices for parallel sparse-matrix vector multiplic...

متن کامل

Solving Linear Systems with Sparse Matrices on Hypercubes

We investigate parallel Gauss elimination for sparse matrices, especially those arising from the discretization of PDEs. We propose an approach which combines minimum degree ordering, nested dissection, domain decomposition and multifront techniques. Neither symbolic factorization nor explicit representation of elimination trees are needed. An effective and economic dynamic data structure is pr...

متن کامل

Eecient Sparse Cholesky Factorization on a Parallel Simd Computer

We investigate the eeect of load balancing when performing Cholesky factor-ization on a SIMD computer. In particular we describe a supernodal algorithm for performing sparse Cholesky factorization. The way the matrix is mapped onto the processors has signiicant eeect on its eeciency. We show that this assignment problem can be modeled as a graph coloring problem in a weighted graph. By a simple...

متن کامل

Heterogeneous Sparse Matrix Computations on Hybrid GPU/CPU Platforms

Hybrid GPU/CPU clusters are becoming very popular in the scientific computing community, as attested by the number of such systems present in the Top 500 list. In this paper, we address one of the key algorithms for scientific applications: the computation of sparse matrix-vector products that lies at the heart of iterative solvers for sparse linear systems. We detail how design patterns for sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997