Are recent Arctic ozone losses caused by increasing greenhouse gases?
نویسندگان
چکیده
[1] It has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis data sets and find no statistically significant trends in VPSC–nor changes in their probability density functions–over the period 1979–2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases. Citation: Rieder, H. E., and L. M. Polvani (2013), Are recent Arctic ozone losses caused by increasing greenhouse gases?, Geophys. Res. Lett., 40, 4437–4441, doi:10.1002/grl.50835.
منابع مشابه
Extrapolating future Arctic ozone losses
Future increases in the concentration of greenhouse gases and water vapour may cool the stratosphere further and increase the amount of polar stratospheric clouds (PSCs). Future Arctic PSC areas have been extrapolated from the highly significant trends 1958–2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting ...
متن کاملDirect and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases
We assess the roles of long-lived greenhouse gases and ozone depletion in driving meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using a ...
متن کاملDistinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends
Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we provide evidence that changes in the concentrations of ozone-depleting substances (ODS), not WMGHG, have been the primary driver of observed Arctic lower stratospheric trends ...
متن کاملContributions of External Forcings to Southern Annular Mode Trends
An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas increases, and natural variability all being possible contenders. Because it is difficult to separate the contribution of various external forcings to t...
متن کاملArctic air pollution: origins and impacts.
Notable warming trends have been observed in the Arctic. Although increased human-induced emissions of long-lived greenhouse gases are certainly the main driving factor, air pollutants, such as aerosols and ozone, are also important. Air pollutants are transported to the Arctic, primarily from Eurasia, leading to high concentrations in winter and spring (Arctic haze). Local ship emissions and s...
متن کامل