Some calculations on type II1 unprojection

نویسنده

  • Stavros Argyrios Papadakis
چکیده

The type II1 unprojection is, by definition, the generic complete intersection type II unprojection, in the sense of [P] Section 3.1, for the parameter value k = 1, and depends on a parameter n ≥ 2. Our main results are the explicit calculation of the linear relations of the type II1 unprojection for any value n ≥ 2 (Theorem 3.16) and the explicit calculation of the quadratic equation for the case n = 3 (Theorem 4.1). In addition, Section 5 contains applications to algebraic geometry, while Section 6 contains the Macaulay 2 code for the type II1 unprojection for the parameter value n = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The equations of type II1 unprojection

The type II1 unprojection is, by definition, the generic complete intersection type II unprojection, in the sense of [P] Section 3.1, for the parameter value k = 1, and depends on a parameter n ≥ 2. Our main results are the explicit calculation of the linear relations of the type II1 unprojection for any value n ≥ 2 (Theorem 3.16) and the explicit calculation of the quadratic equation for the c...

متن کامل

Remarks on Type III Unprojection

Type III unprojection plays a very important role in the birational geometry of Fano threefolds (cf. [CPR], [Ki], [BZ]). According to [Ki] p. 43, it was first introduced by A. Corti on his calculations of Fano threefolds of genus 6 and 7. It seems that at present a general definition of type III unprojection is still missing. After proving in Section 2 some general facts about residual ideals, ...

متن کامل

Type II Unprojection

Answering a question of M. Reid, we define and prove the Gorensteiness of the type II unprojection.

متن کامل

On a Class of Ii1 Factors with at Most One Cartan Subalgebra Ii

This is a continuation of our previous paper studying the structure of Cartan subalgebras of von Neumann factors of type II1. We provide more examples of II1 factors having either zero, one or several Cartan subalgebras. We also prove a rigidity result for some group measure space II1 factors.

متن کامل

A Kurosh Type Theorem for Type Ii1 Factors

The classification of type II1 factors (of discrete groups) was initiated by Murray and von Neumann [MvN] who distinguished the hyperfinite type II1 factor R from the group factor LFr of the free group Fr on r ≥ 2 generators. Thirty years later, Connes [Co2] proved uniqueness of the injective type II1 factor. Thus, the group factor LΓ of an ICC amenable group Γ is isomorphic to the hyperfinite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007