M(atrix) Theory on an Orbifold and Twisted Membrane M(atrix) Theory on an Orbifold and Twisted Membrane 1

نویسندگان

  • Nakwoo Kim
  • Soo-Jong Rey
چکیده

M(atrix) theory on an orbifold and classical two-branes therein are studied with particular emphasis to heterotic M(atrix) theory on S1=Z2 relevant to strongly coupled heterotic and dual Type IA string theories. By analyzing orbifold condition on Chan-Paton factors, we show that three choice of gauge group are possible for heterotic M(atrix) theory: SO(2N), SO(2N + 1) or USp(2N). By examining area-preserving di eomorphism that underlies the M(atrix) theory, we nd that each choices of gauge group restricts possible topologies of twobranes. The result suggests that only the choice of SO(2N) or SO(2N +1) groups allows open two-branes, hence, relevant to heterotic M(atrix) theory. We show that requirement of both local vacuum energy cancellation and of worldsheet anomaly cancellation of resulting heterotic string identi es supersymmetric twisted sector spectra with sixteen fundamental representation spinors from each of the two xed points. Twisted open and closed two-brane con gurations are obtained in the large N limit. Work supported in part by the Department of Energy Contract DE-AC03-76SF00515, NSF Grant PHY9219345, U.S.NSF-KOSEF Bilateral Grant, KOSEF Purpose-Oriented Research Grant 94-1400-04-01-3 and SRC-Program, Ministry of Eduction Grant BSRI 97-2410 and the Seoam Foundation Fellowship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ( atrix ) Theory on an Orbifold and Twisted Membrane 1

M(atrix) theory on an orbifold and classical two-branes therein are studied with particular emphasis to heterotic M(atrix) theory on S1/Z2 relevant to strongly coupled heterotic and dual Type IA string theories. By analyzing orbifold condition on Chan-Paton factors, we show that three choices of gauge group are possible for heterotic M(atrix) theory: SO(2N), SO(2N + 1) or USp(2N). By examining ...

متن کامل

Orbifold and Five-branes

We study M(atrix) theory description of M theory compactified on T5/Z2 orbifold. In the large volume limit we show that M theory dynamics is described by N = 8 supersymmetric USp(2N) M(atrix) quantum mechanics. Via zero-brane parton scattering, we show that each orbifold fixed point carries anomalous G-flux ∮ [G/2π] = −1/2. To cancel the anomalous Gflux , we introduce twisted sector consisting ...

متن کامل

Aspects of ALE Matrix Models and Twisted Matrix Strings

We examine several aspects of the formulation of M(atrix)-Theory on ALE spaces. We argue for the existence of massless vector multiplets in the resolved An−1 spaces, as required by enhanced gauge symmetry in M-Theory, and that these states might have the correct gravitational interactions. We propose a matrix model which describes M-Theory on an ALE space in the presence of wrapped membranes. W...

متن کامل

M ( atrix ) Theory on T 5 / Z 2 Orbifold and Five - Branes 1

We show that compactification of the M(atrix) theory on orbifold T5/Z2 is described by N = 8 supersymmetric quantum mechanics with USp(2N) gauge group and Spin(5)⊗Spin(4) R-symmetry. Using zero-brane and two-brane as probes, we find that each of the thirtytwo orbifold fixed points carry G-flux ∮ [G/2π] = −1/2. This anomalous G-flux is cancelled supersymmetrically by turning on sixteen longitudi...

متن کامل

Wilson Lines and T - Duality in Heterotic M ( atrix ) Theory

We study the M(atrix) theory which describes the E8×E8 heterotic string compactified on S , or equivalently M-theory compactified on an orbifold (S/Z 2)×S, in the presence of a Wilson line. We formulate the corresponding M(atrix) gauge theory, which lives on a dual orbifold S × (S/Z 2). Thirty-two real chiral fermions must be introduced to cancel gauge anomalies. In the absence of an E8 × E8 Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997