Continuous Dependence of Solutions for Ill-posed Evolution Problems

نویسندگان

  • MATTHEW FURY
  • RHONDA J. HUGHES
چکیده

We prove Hölder-continuous dependence results for the difference between certain ill-posed and well-posed evolution problems in a Hilbert space. Specifically, given a positive self-adjoint operator D in a Hilbert space, we consider the ill-posed evolution problem du(t) dt = A(t,D)u(t) 0 ≤ t < T

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Stability for Ill-Posed Problems in Banach Space

We prove Hölder-continuous dependence results for the difference between solutions of certain ill-posed and approximate well-posed problems in both Hilbert and Banach spaces. We use operator-theoretic methods, including C-semigroups, to treat the abstract Cauchy problem du dt = Au, u(0) = χ, 0 ≤ t < T, where the operator −A is the infinitesimal generator of a holomorphic semigroup.

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

A discrete L-curve for the regularization of ill-posed inverse problems

In many applications, the discretization of continuous ill-posed inverse problems results in discrete ill-posed problems whose solution requires the use of regularization strategies. The L-curve criterium is a popular tool for choosing good regularized solutions, when the data noise norm is not a priori known. In this work, we propose replacing the original ill-posed inverse problem with a nois...

متن کامل

Fast Communication Existence of Solutions to an Evolution Equation and a Justification of the Dsm for Equations with Monotone Operators

An evolution equation, arising in the study of the Dynamical Systems Method (DSM) for solving equations with monotone operators, is studied in this paper. The evolution equation is a continuous analog of the regularized Newton method for solving ill-posed problems with monotone nonlinear operators F . Local and global existence of the unique solution to this evolution equation are proved, appar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010