Comparative Analysis of DFIG Based Wind Farms Control Mode on Long-Term Voltage Stability
نویسندگان
چکیده
The wind energy industry is experiencing a strong growth in most countries in the last years. Several technical, economic and environmental benefits can be attained by connecting wind energy to distribution systems such as power loss reduction, the use of clean energy, postponement of system upgrades and increasing reliability. The doubly fed induction gen‐ erator (DFIG) is currently the most commonly installed wind turbine in power systems. DFIG can be operated in two different control modes: constant power factor and voltage control. In the power factor control mode, the reactive power from the turbine is controlled to match the active power production at a fixed ratio. When terminal voltage control is em‐ ployed, the reactive power production is controlled to achieve a target voltage at a specified bus. Many wind operators currently prefer the unity power factor mode since it is the active power production that is rewarded [1].
منابع مشابه
Improvement of Transient Voltage Profile Using Power Control of the DFIG-Based Wind Farm Under Severe Voltage Dip Event
Improving transient voltage stability is one of the most important issues that must be provided by doubly fed induction generator (DFIG)-based wind farms (WFs) according to the grid code requirement. This paper proposes adjusted DC-link chopper based passive voltage compensator and modified transient voltage controller (MTVC) based active voltage compensator for improving transient voltage stab...
متن کاملComparison of the effects of two flatness based control methods for STATCOM on improving stability in power systems including DFIG based wind farms
Power grids are complex, interconnected and nonlinear systems, and this will be more severe when they are subjected to high wind resources penetration. Static synchronous compensators (STATCOM) are used to improve voltage regulation and to meet grid codes in power systems, including doubly fed induction generators (DFIG) based wind farms. Despite the nonlinear nature of STATCOM, the conventiona...
متن کاملSmall Signal Stability Analysis for a DFIG-Based Offshore Wind Farms Collected Through VSC-HVDC Transmission System
This paper modeled a doubly fed induction generator (DFIG) based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collected with infinite bus for small signal stability analysis. The control system of HVDC system is considered for the stability analysis. The impact of the VSC control parameters on the ne...
متن کاملSmall-signal stability analysis of DFIG based wind power system using teaching learning based optimization
The present paper formulates the state space modelling of doubly fed induction generator (DFIG) based wind turbine system for the purpose of small-signal stability analysis. The objective of this study is to discuss the various modes of operation of the DFIG system under different operating conditions such as three phase fault and voltage sags with reference to variable wind speed and grid conn...
متن کاملLow Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage
In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...
متن کامل