Inhibition of Rac and ROCK Signalling Influence Osteoblast Adhesion, Differentiation and Mineralization on Titanium Topographies
نویسندگان
چکیده
Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications.
منابع مشابه
Actin cytoskeleton controls activation of Wnt/β-catenin signaling in mesenchymal cells on implant surfaces with different topographies.
Surface topography affects cell function and differentiation. It has been previously shown that rough surfaces can enhance the activation of canonical Wnt signaling, an important pathway for osteoblast differentiation and bone maintenance, but the underlying mechanisms are still poorly understood. The present paper investigates whether cytoskeletal organization contributes to regulating this pa...
متن کاملNon-mulberry silk fibroin influence osteogenesis and osteoblast-macrophage cross talk on titanium based surface
The titanium and its alloys are used as orthopedic dental implants due to their mechanical and bio-inert properties. The bare metal implants are not the ultimate answer for better osteogenesis and implant integration. Physical and chemical modifications are carried out to achieve the goal of improved adhesion and differentiation of the osteoblast. In this work, the silk fibroins from both mulbe...
متن کاملIncreased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening
Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, an...
متن کاملRegulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography
Gingival connective tissue often has a composition resembling that of scar surrounding dental implant abutments. Increased cell adhesion, α-smooth muscle actin (α-SMA) expression and increased extracellular matrix deposition are a hallmark of fibrotic cells, but how topographic features influence gingival fibroblast adhesion and adoption of the α-SMA positive myofibroblast phenotype associated ...
متن کاملGlow discharge plasma treatment of titanium plates enhances adhesion of osteoblast-like cells to the plates through the integrin-mediated mechanism.
PURPOSE Initial adhesion of cells to implant surfaces and subsequent behavior of the cells are important determinants for biocompatibility of the implants. It was previously reported that both adhesion of MC3T3-E1 osteoblast-ike cells to titanium (Ti) plates and their differentiation into more mature cells on the plates were stimulated by treatment of the plates with glow discharge plasma (GDP)...
متن کامل