Three-dimensional coordinates of individual atoms in materials revealed by electron tomography.
نویسندگان
چکیده
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ∼19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ∼1 nm(3) and a precision of ∼10(-3), which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.
منابع مشابه
Atomic electron tomography: 3D structures without crystals.
Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advan...
متن کاملThree-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy.
Aberration correction in scanning transmission electron microscopy has more than doubled the lateral resolution, greatly improving the visibility of individual impurity or dopant atoms. Depth resolution is increased five-fold, to the nanometer level. We show how a through-focal series of images enables single Hf atoms to be located inside an advanced gate dielectric device structure to a precis...
متن کاملThree-dimensional reconstruction of New Zealand rabbit antebrachium by multidetector computed tomography
The aim of this study was to reveal biometric peculiarities of New Zealand white rabbit antebrachium (radius and ulna) by means of three-dimensional (3D) reconstruction of multidetector computed tomography (MDCT) images. Under general anesthesia, the antebrachiums of a total of sixteen rabbits of both sexes were scanned with a general diagnostic MDCT. Biometric measurements of the reconstructed...
متن کاملThree-Dimensional Computed Tomography Diagnosis of Cranium Bifidum with Meningocele in a Lamb
Abstract Case Description- A three-day-old male Kordi lamb had a soft painless fluctuating mass on the mid-parietal region, with no clinical signs except difficulty in standing; was referred to the clinic. Clinical Findings- Clinical examination revealed a normal body temperature, a heart rate, a respiratory rate, and inability to stand without any congenital defects Three-dimensional comp...
متن کاملEELS and EFTEM Analysis of Biological Materials
The high sensitivity of electron energy-loss spectroscopy (EELS) for detecting light elements at the nanoscale in the analytical electron microscope makes it a valuable technique for applications to biological materials [1]. In particular, EELS provides quantitative information about elemental distributions within subcellular compartments, and the number of specific atoms that are bound to indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2015