Applications of a Space Decomposition Method to Linear and Nonlinear Elliptic Problems
نویسندگان
چکیده
This work presents some space decomposition algorithms for a convex minimization problem. The algorithms has linear rate of convergence and the rate of convergence depends only on four constants. The space decomposition could be a multigrid or domain decomposition method. We explain the detailed procedure to implement our algorithms for a two-level overlapping domain decomposition method and estimate the needed constants. Numerical tests are reported for linear as well as nonlinear elliptic problems. c © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 717–737, 1998
منابع مشابه
Exact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملContemporary Mathematics Volume Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems
In this paper we study several overlapping domain decompo sition based iterative algorithms for the numerical solution of some non linear strongly elliptic equations discretized by the nite element methods In particular we consider additive Schwarz algorithms used together with the classical inexact Newton methods We show that the algorithms con verge and the convergence rates are independent o...
متن کاملAn assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow
In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...
متن کامل