Phenylpropanoids as master regulators: state of the art and perspectives in common bean (Phaseolus vulgaris)
نویسندگان
چکیده
Like other organisms, plants have to deal with a dynamic environment. To respond and adapt to the environmental conditions plants rely in a diverse battery of cell-surface protein-receptors and secondary metabolites. Phenylpropanoids are metabolites required for this big task, they regulate a wide range of physiological process, such as pigmentation of flowers and fruits, seed dispersal through attracting pollinators, auxin transport and UVB protection (Peer and Murphy, 2007; Tanaka et al., 2008; Agati and Tattini, 2010; Vogt, 2010). Likewise, these secondary metabolites are critical to establish symbiotic interactions as well as to fight against pathogens (Dixon et al., 2002; Cooper, 2004). Besides these roles in planta, phenylpropanoids play an important role in the human health. For example, different flavonoids have neuroprotective, antiinflammatory, analgesic, bacterial and anti-fungicidal activity (Figure 1; Yu and Jez, 2008). One of the most exiting examples about the relevance of phenylpropanoid in planta and human health levels is the common bean (Phaseolus vulgaris). In one hand, this legume uses different flavonoids to establish a symbiotic interaction with the N2-fixing soil bacteria collectively known as rhizobia. Through this interaction, common bean obtains nitrogen for its own metabolic requirements and this in turn is delivered to other organisms, including humans. In the other hand, common bean grains, besides being the main source of protein and fiber for human consumption, provide a variety of flavonoids, isoflavonoids and lignans with potential medical properties (Broughton et al., 2003). Most of our knowledge about the phenylpropanoid synthesis and the genetic control of this pathway come from biochemical and genetic studies on the model plant Arabidopsis thaliana (Vogt, 2010). Despite the ecological and dietary relevance of common bean, our knowledge about the genetic control of the phenylpropanoids in this legume is scarce. To fill-up this gap, Reinprecht et al. (2013) used comparative genomics analyses and traditional PCR-based cloning to identify 46 structural and regulatory genes from the common bean phenylpropanoid pathway. The identified genes would play roles in: general phenylpropanoid pathway (PAL, C4H, and 4CL), lignin/lignan(CCR, CAD, C3H), flavonoid/anthocyanin(CHS, CHI, CHR, F3H) or isoflavonoid (IFS, IFR, 7IOMT) biosynthesis. Interestingly, with these experimental approaches, Reinprecht and colleagues were able to identify the transcription factors LIM, KAP-2, HD, WIP, and Myb15, all of them with a potential role in the transcriptional control of the phenylpropanoid pathway. These results provide a significant insight in our knowledge about the genetic control of the phenylpropanoid pathway in common bean. Furthermore, this study provides two additional aspects: (1) a large repertory of candidate genes for reverse genetic analyses that can lead us to understand their role in the biosynthesis of these secondary metabolites, and (2) a variety of marker genes that can be used for plant breeding programs in common bean. Mapping genes into the genome is a required step for plant breeding programs. For this, it is also important to know the genome sequence of the plant of interest. For several years, the lack of the common bean genome sequence was one of the main limitations to do a deep genetic analysis. Recently, the common bean genome sequence was reported (Schmutz et al., 2014). This together with the known soybean genome sequence (Schmutz et al., 2010) opens the gates to perform detailed comparative analysis. Reinprecht et al. (2013) harnessed the close genetic relatedness between common bean and soybean to performed a comparative mapping in silico and were able to map the 46 identified-phenylpropanoid genes into some of the 11 chromosomes of common bean. For example, they mapped CHS, Myb4, PAL3, and LIM in the common bean chromosome Pv2, Pv6, Pv8, Pv9, respectively. Perhaps one of the most interesting results of this mapping analysis is the fact that most of the identified transcription factor genes were mapped in the chromosome Pv10. This finding is relevant considering that there are several cases where most of the genes that control a particular pathway are located in one chromosome. For example, several genes that control the symbiotic interaction between Medicago truncatula and rhizobia are located in the
منابع مشابه
Biochemical characteristics of red bean (Phaseolus vulgaris L.) genotypes as affected by seed pre-treatment with growth regulators .
In order to investigate the effect of seed pretreatment with growth regulators on biochemical characteristics of red bean genotypes, a factorial experiment was carried out in a randomized complete block design with three replications. In this research, seed pretreatment with growth regulators namely salicylic acid (SA) and naphthalene acetic acid (NAA) were applied at four levels including P0: ...
متن کاملMorpho-Physiological Characterization Related to Drought Tolerance of Common Bean (Phaseolus Vulgaris L.) Genotypes
Drought is one of the limiting factor in common bean, development of common bean varieties that adapted to drought situations is the main focus for improving food crops. In this study, 25 genotypes of common beans (Phaseolus vulgaris L.) were grown under drought stress and non-stress conditions. The field work was conducted at Melkassa Agricultural Research Center during the off-season that lai...
متن کاملMorpho-Physiological Characterization Related to Drought Tolerance of Common Bean (Phaseolus Vulgaris L.) Genotypes
Drought is one of the limiting factor in common bean, development of common bean varieties that adapted to drought situations is the main focus for improving food crops. In this study, 25 genotypes of common beans (Phaseolus vulgaris L.) were grown under drought stress and non-stress conditions. The field work was conducted at Melkassa Agricultural Research Center during the off-season that lai...
متن کاملIn silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr
Legumes contain a variety of phytochemicals derived from the phenylpropanoid pathway that have important effects on human health as well as seed coat color, plant disease resistance and nodulation. However, the information about the genes involved in this important pathway is fragmentary in common bean (Phaseolus vulgaris L.). The objectives of this research were to isolate genes that function ...
متن کاملEffect of foliar application of seaweed Ascophyllum nodosum extract on morpho-physiological characteristics of bean (Phaseolus vulgaris) under water stress
Seaweed extract can improve the physicochemical properties of the soil and has a favorable effect on the plant growth and development due to having high nutrient content, high water holding capacity, plant growth regulators and beneficial microorganisms. The aim of this experiment was to investigate the effect of Ascophyllum nodosum extract, a brown alga, on the morphophysiological characterist...
متن کامل