Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase.

نویسندگان

  • Y Bourne
  • S M Redford
  • H M Steinman
  • J R Lepock
  • J A Tainer
  • E D Getzoff
چکیده

Eukaryotic Cu,Zn superoxide dismutases (CuZnSODs) are antioxidant enzymes remarkable for their unusually stable beta-barrel fold and dimer assembly, diffusion-limited catalysis, and electrostatic guidance of their free radical substrate. Point mutations of CuZnSOD cause the fatal human neurodegenerative disease amyotrophic lateral sclerosis. We determined and analyzed the first crystallographic structure (to our knowledge) for CuZnSOD from a prokaryote, Photobacterium leiognathi, a luminescent symbiont of Leiognathid fish. This structure, exemplifying prokaryotic CuZnSODs, shares the active-site ligand geometry and the topology of the Greek key beta-barrel common to the eukaryotic CuZnSODs. However, the beta-barrel elements recruited to form the dimer interface, the strategy used to forge the channel for electrostatic recognition of superoxide radical, and the connectivity of the intrasubunit disulfide bond in P. leiognathi CuZnSOD are discrete and strikingly dissimilar from those highly conserved in eukaryotic CuZnSODs. This new CuZnSOD structure broadens our understanding of structural features necessary and sufficient for CuZnSOD activity, highlights a hitherto unrecognized adaptability of the Greek key beta-barrel building block in evolution, and reveals that prokaryotic and eukaryotic enzymes diverged from one primordial CuZnSOD and then converged to distinct dimeric enzymes with electrostatic substrate guidance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prokaryotic Cu,Zn superoxide dismutases.

The Cu,ZnSODs (Cu,Zn superoxide dismutases) comprise a class of ubiquitous metalloenzymes that catalyse the dismutation of the superoxide radical anion into oxygen and hydrogen peroxide. The dismutation reaction involves two successive encounters of the superoxide anion with a catalytic copper centre hosted by the enzyme at the dead end of a narrow protein channel. Cu,ZnSOD is found in all euka...

متن کامل

Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis.

Several bacterial pathogens possess sodC genes that encode periplasmic or membrane-associated Cu,Zn superoxide dismutases. Since professional phagocytes generate large amounts of reactive oxygen species to control the growth of invading micro-organisms, Cu,Zn superoxide dismutase might protect infectious bacteria from oxy-radical damage and facilitate their survival within the host. This idea h...

متن کامل

Isolation of an active and heat-stable monomeric form of Cu,Zn superoxide dismutase from the periplasmic space of Escherichia coli.

We have purified the Cu,Zn superoxide dismutase (CuZnSOD) from the periplasmic space of an Escherichia coli strain unable to synthesize MnSOD and FeSOD. Gel filtration chromatography evidenced that under all the experimental conditions tested the enzyme was monomeric. The catalytic activity of this CuZnSOD was comparable to that of other well characterized dimeric eukaryotic isoenzymes, indicat...

متن کامل

Interaction between leukotoxin and Cu,Zn superoxide dismutase in Aggregatibacter actinomycetemcomitans.

Aggregatibacter (Actinobacillus) actinomycetemcomitans is a gram-negative oral pathogen that is the etiologic agent of localized aggressive periodontitis and systemic infections. A. actinomycetemcomitans produces leukotoxin (LtxA), which is a member of the RTX (repeats in toxin) family of secreted bacterial toxins and is known to target human leukocytes and erythrocytes. To better understand ho...

متن کامل

Role of the dimeric structure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli.

To investigate the structural/functional role of the dimeric structure in Cu,Zn superoxide dismutases, we have studied the stability to a variety of agents of the Escherichia coli enzyme, the only monomeric variant of this class so far isolated. Differential scanning calorimetry of the native enzyme showed the presence of two well defined peaks identified as the metal free and holoprotein. Unli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 23  شماره 

صفحات  -

تاریخ انتشار 1996