Coördinating Human-Robot Communication
نویسندگان
چکیده
As robots begin to emerge from the cloisters of industrial and military applications and enter the realms of coöperative partners for people, one of the most important facets of human-robot interaction (HRI) will be communication. This can not merely be summarized in terms of the ongoing development into unimodal communication mechanisms such as speech interfaces, which can apply to any technology. Robots will be able to communicate in physically copresent, “faceto-face” interactions across more concurrent modalities than any previous technology. Like many other technologies, these robots will change the way people work and live, yet we must strive to adapt robots to humans, rather than the reverse. This thesis therefore contributes mechanisms for facilitating and influencing human-robot communication, with an explicit focus on the most salient aspect that differentiates robots from other technologies: their bodies. In order to communicate effectively with humans, robots require supportive infrastructure beyond the communications capabilities themselves, much as do the humans themselves. They need to be able to achieve basic common ground with their counterparts in order to ensure that accurate and efficient communication can occur at all. For certain types of higher level communication, such as skill transfer, robots need some of the underlying cognitive mechanisms that humans both possess and assume to be present in other communicative agents. One of these general mechanisms is self-awareness. This thesis details development of these underlying infrastructure components. Four broad areas of human-robot communication are then investigated, and applied to four robotic systems with different physical attributes and computational architectures. The concept of minimal communication, in which a robot must communicate basic information without the benefit of immediately recognizable anthropomorphic features, is presented. A system for enabling spatial communication, in which the human and robot must achieve common ground and support natural physical communication in the presence of other physical objects in the shared environment, is described. A model for behavioral encoding of non-verbal communication is developed, including the expression of both body language and proxemics. Finally, the use of existing communications modalities to produce interactively shaped communication for future expression is introduced, through a system that allows a human director to coach a robot through an acting performance. The robots featured in this thesis are the “Public Anemone” interactive robot theatre exhibit and “Leonardo” humanoid robot interaction testbed of the MIT Media Laboratory’s Robotic Life Group; the “Robonaut” autonomous humanoid astronaut assistant robot of NASA Johnson Space Center’s Dextrous Robotics Laboratory; and the “QRIO” autonomous humanoid entertainment robots of Sony Corporation’s Intelligence Dynamics Laboratories. Thesis Supervisor: Cynthia L. Breazeal Title: Associate Professor of Media Arts and Sciences
منابع مشابه
An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot
Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملConceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملThe Design and Realization of a Gait Rehabilitation Training Robot with Body Supporting Mechanism
With the increasing number of people who have problems with their walking, a new type of gait rehabilitation training robot has been put forward and designed. In order to meet the requirements of the gait rehabilitation training, the whole mechanical structure and control system have been designed, and the model machine for gait rehabilitation training robot has been made. Using the human gait ...
متن کاملCovert Robot-Robot Communication: Human Perceptions and Implications for Human-Robot Interaction
As future human-robot teams are envisioned for a variety of application domains, researchers have begun to investigate how humans and robots can communicate effectively and naturally in the context of human-robot team tasks. While a growing body of work is focused on human-robot communication and human perceptions thereof, there is currently little work on human perceptions of robot-robot commu...
متن کامل