Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes
نویسندگان
چکیده
Porous starch granules (PSGs) with various pores and cavity sizes were prepared by amylolysis enzymes. The greatest hydrolysis rate on corn starch granule was observed with α-amylase, followed by gluco- and β-amylases. Temperature increase enhanced glucoamylase reaction rate more drastically than other enzyme treatments. Final hydrolysis level with glucoamylase reached to 66.9%, close to 67.5% of α-amylolysis. The α-amylase-treated PSGs displayed the greatest pore size and ratio of cavity-to-granule diameters. Gelatinization onset temperatures of PSGs increased to 72.1 (α-), 68.7 (β-), and 68.1°C (gluco-amylolysis) after 8 h; enthalpy changes of β- and gluco-amylase-treated PSGs increased to 13.4, and 13.1 J/g but α-amylase-treated one showed slightly reduced value of 8.5 J/g. Water holding capacities of PSGs were 209.7 (α-), 94.6 (β-), and 133.8% (gluco-amylolysis), and the untreated control had 89.1%; oil holding capacities of them showed 304.5, 182.7, and 211.5%, respectively, while the untreated control had 161.8%. Thus, enzyme types and their reaction conditions can be applied to generate desirable cavity and pore sizes in starch granules. This biocatalytic approach could contribute to develop tailor-made PSGs with distinct internal structure for specific uses in wide range of food, pharmaceutical and other industrial applications.
منابع مشابه
Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes
Native granular starches (corn, cassava,mung bean, and sago) were hydrolyzed using amixture of alpha-amylase and glucoamylase at 35 ◦C for 24h. Hydrolyzed starches were analyzed for the degree of hydrolysis and for physicochemical and functional properties. Corn starch showed the highest degree of hydrolysis, as evidenced by the presence of distinct pores penetrating deep into the granules. Enz...
متن کاملSCREENING FOR STARCH-HYDROLYSING BACTERIA
Screening of3000 soil samples collected from cities of four different provinces of Iran for starch-hydrolysing bacteria revealed that the nature is enriched with Streptomyces species capable of producing amylolytic enzymes. Among the bacterial isolates, one of the high starch-degrading strains was selected for further microbiological identification and also amylolytic enzyme(s) characteriza...
متن کاملA Novel Method to Detect β-Cyclodextrin Glucosyl Transferase (β-CGTase) Activity on Polyacrylamide Gels
b-cyclodextrin glucosyl transferase (b-CGTase) hydrolyses starch to produce b-cyclodextrin by transglycosylation (cyclization) activity. The conventional method for detection of b-CGTase activity is based on detecting starch hydrolysis by iodine staining. This method reveals all amylolytic enzymes, but can not discriminate them. In the present study, we introduce a new method for specific detec...
متن کاملIn vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.
It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize ...
متن کاملEffects of heat-moisture treatment on physicochemical properties of wheat starch
Abstract Heat-moisture treatment is a physical method for starch modification to improve its functional properties depending on the application. The functional characteristics of the heat-moisture treated starch depend upon the source of starch and treatment conditions including time and temperature. The main objective of this study was to determine the functional properties of heat-moisture tr...
متن کامل